PSEUDORANDOM GENERATORS FOR COMBINATORIAL SHAPES

被引:11
作者
Gopalan, Parikshit [1 ]
Meka, Raghu [2 ]
Reingold, Omer [1 ]
Zuckerman, David [3 ]
机构
[1] Microsoft Res, Mountain View, CA 94043 USA
[2] Princeton Univ, IAS, Princeton, NJ 08540 USA
[3] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
pseudorandomness; derandomization; central limit theorems; K-WISE; CONSTRUCTIONS; DISTRIBUTIONS; INDEPENDENCE; SPACES;
D O I
10.1137/110854990
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct pseudorandom generators for combinatorial shapes, which substantially generalize combinatorial rectangles, epsilon-biased spaces, 0/1 halfspaces, and 0/1 modular sums. A function f : [m](n) -> {0, 1} is an (m, n)-combinatorial shape if there exist sets A(1), ... , A(n) subset of [m] and a symmetric function h : {0, 1}(n) -> {0, 1} such that f(x(1), ... , x(n)) = h(1(A1) (x(1)), ... , 1A(n) (x(n))). Our generator uses seed-length O(logm + logn + log(2)(1/epsilon)) to get error epsilon. When m = 2, this gives the first generator of seed-length O(log n) that fools all weight-based tests, meaning that the distribution of the weight of any subset is epsilon-close to the appropriate binomial distribution in statistical distance. Along the way, we give a generator for combinatorial rectangles with seed-length O(log(3/2) n) and error 1/poly(n), matching Lu's bound from ICALP 1998. For our proof we give a simple lemma which allows us to convert closeness in Kolmogorov (cdf) distance to closeness in statistical distance. As a corollary of our technique, we give an alternative proof of a powerful variant of the classical central limit theorem showing convergence in statistical distance, instead of the usual Kolmogorov distance.
引用
收藏
页码:1051 / 1076
页数:26
相关论文
共 29 条
[1]   SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES [J].
ALON, N ;
GOLDREICH, O ;
HASTAD, J ;
PERALTA, R .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :289-304
[2]  
[Anonymous], WILEY INTERSCI SER D
[3]   Discrepancy sets and pseudorandom generators for combinatorial rectangles [J].
Armoni, R ;
Saks, M ;
Wigderson, A ;
Zhou, SY .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :412-421
[4]  
Barbour AD, 2002, ANN PROBAB, V30, P509
[5]  
Barbour AD., 1999, ESAIM-PROBAB STAT, V3, P131, DOI 10.1051/ps:1999106
[6]   POLYLOGARITHMIC INDEPENDENCE CAN FOOL DNF FORMULAS [J].
Bazzi, Louay M. J. .
SIAM JOURNAL ON COMPUTING, 2009, 38 (06) :2220-2272
[7]  
CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8
[8]  
Daskalakis C, 2007, ANN IEEE SYMP FOUND, P83, DOI 10.1109/FOCS.2007.24
[9]   Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games [J].
Daskalakis, Constantinos ;
Papadimitriou, Christos H. .
PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, :25-34
[10]   BOUNDED INDEPENDENCE FOOLS HALFSPACES [J].
Diakonikolas, Ilias ;
Gopalan, Parikshit ;
Jaiswal, Ragesh ;
Servedio, Rocco A. ;
Viola, Emanuele .
SIAM JOURNAL ON COMPUTING, 2010, 39 (08) :3441-3462