Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism

被引:85
作者
del Rey, Marco [1 ]
Chin, Alex W. [2 ]
Huelga, Susana F. [3 ,4 ]
Plenio, Martin B. [3 ,4 ]
机构
[1] CSIC, Inst Fis Fundamental, E-28006 Madrid, Spain
[2] Univ Cambridge, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
[3] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[4] Univ Ulm, Ctr Integrated Quantum Sci & Technol, D-89069 Ulm, Germany
关键词
QUANTUM COHERENCE; ELECTRONIC COHERENCE; COMPLEX; ORIGIN;
D O I
10.1021/jz400058a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nontrivial interplay between quantum coherence and dissipative environment-driven dynamics is becoming increasingly recognized as the key for efficient energy transport in photosynthetic pigment protein complexes, and converting these biologically inspired insights into a set of design principles that can be implemented in artificial light-harvesting systems has become an active research field. Here we identify a specific design principle, the phonon antenna, by which interpigment coherence is able to modify and optimize the way that excitations spectrally sample their local environmental fluctuations. We provide numerical simulations that suggest that the Fenna-Matthews-Olson complex of green sulfur bacteria has an excitonic structure that is dose to such an optimal operating point, and place the phonon antenna concept into a broader context that leads us to conjecture that this general design principle might well be exploited in other biomolecular systems.
引用
收藏
页码:903 / 907
页数:5
相关论文
共 33 条
[1]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[2]  
[Anonymous], 2002, Molecular Mechanisms of Photosynthesis
[3]  
Blum K., 1981, Density Matrix Theory and Applications
[4]   Two-dimensional spectroscopy of electronic couplings in photosynthesis [J].
Brixner, T ;
Stenger, J ;
Vaswani, HM ;
Cho, M ;
Blankenship, RE ;
Fleming, GR .
NATURE, 2005, 434 (7033) :625-628
[5]   The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein [J].
Busch, Marcel Schmidt Am ;
Mueh, Frank ;
Madjet, Mohamed El-Amine ;
Renger, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (02) :93-98
[6]  
Cai J., 2013, NEW J PHYS, V15
[7]   A large-scale quantum simulator on a diamond surface at room temperature [J].
Cai, Jianming ;
Retzker, Alex ;
Jelezko, Fedor ;
Plenio, Martin B. .
NATURE PHYSICS, 2013, 9 (03) :168-173
[8]   Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex II [J].
Calhoun, Tessa R. ;
Ginsberg, Naomi S. ;
Schlau-Cohen, Gabriela S. ;
Cheng, Yuan-Chung ;
Ballottari, Matteo ;
Bassi, Roberto ;
Fleming, Graham R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (51) :16291-16295
[9]   Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport [J].
Caruso, F. ;
Chin, A. W. ;
Datta, A. ;
Huelga, S. F. ;
Plenio, M. B. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)
[10]   Entanglement and entangling power of the dynamics in light-harvesting complexes [J].
Caruso, Filippo ;
Chin, Alex W. ;
Datta, Animesh ;
Huelga, Susana F. ;
Plenio, Martin B. .
PHYSICAL REVIEW A, 2010, 81 (06)