A goodness-of-fit test for the functional linear model with functional response

被引:6
作者
Garcia-Portugues, Eduardo [1 ,2 ]
Alvarez-Liebana, Javier [3 ]
Alvarez-Perez, Gonzalo [4 ]
Gonzalez-Manteiga, Wenceslao [5 ]
机构
[1] Carlos III Univ Madrid, Dept Stat, Madrid, Spain
[2] Carlos III Univ Madrid, Santander Big Data Inst UC3M, Madrid, Spain
[3] Univ Oviedo, Dept Stat & Operat Res & Math Didact, Oviedo, Spain
[4] Univ Oviedo, Dept Phys, Oviedo, Spain
[5] Univ Santiago de Compostela, Dept Stat Math Anal & Optimizat, Santiago De Compostela, Spain
关键词
bootstrap; Cramer-von Mises statistic; functional data; goodness-of-fit; regularization; REGRESSION-MODELS; SELECTION; CONVERGENCE; PREDICTOR; CHECKS;
D O I
10.1111/sjos.12486
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The functional linear model with functional response (FLMFR) is one of the most fundamental models to assess the relation between two functional random variables. In this article, we propose a novel goodness-of-fit test for the FLMFR against a general, unspecified, alternative. The test statistic is formulated in terms of a Cramer-von Mises norm over a doubly projected empirical process which, using geometrical arguments, yields an easy-to-compute weighted quadratic norm. A resampling procedure calibrates the test through a wild bootstrap on the residuals and the use convenient computational procedures. As a sideways contribution, and since the statistic requires a reliable estimator of the FLMFR, we discuss and compare several regularized estimators, providing a new one specifically convenient for our test. The finite sample behavior of the test is illustrated via a simulation study. Also, the new proposal is compared with previous significance tests. Two novel real data sets illustrate the application of the new test.
引用
收藏
页码:502 / 528
页数:27
相关论文
共 58 条
  • [1] Penalized PCA approaches for B-spline expansions of smooth functional data
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7805 - 7819
  • [2] Testing linearity in semi-parametric functional data analysis
    Aneiros-Perez, German
    Vieu, Philippe
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (02) : 413 - 434
  • [3] [Anonymous], 1942, Duke Math. J, DOI [DOI 10.1215/S0012-7094-42-00908-6, 10.1215/S0012-7094-42-00908-6]
  • [4] Functional linear regression with functional response
    Benatia, David
    Carrasco, Marine
    Florens, Jean-Pierre
    [J]. JOURNAL OF ECONOMETRICS, 2017, 201 (02) : 269 - 291
  • [5] SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES
    BICKEL, PJ
    ROSENBLA.M
    [J]. ANNALS OF STATISTICS, 1973, 1 (06) : 1071 - 1095
  • [6] Testing model assumptions in functional regression models
    Buecher, Axel
    Dette, Holger
    Wieczorek, Gabriele
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (10) : 1472 - 1488
  • [7] Functional linear model
    Cardot, H
    Ferraty, F
    Sarda, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) : 11 - 22
  • [8] Testing hypotheses in the functional linear model
    Cardot, H
    Ferraty, F
    Mas, A
    Sarda, P
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) : 241 - 255
  • [9] Diagnostics for functional regression via residual processes
    Chiou, Jeng-Min
    Muller, Hans-Georg
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4849 - 4863
  • [10] Chiou JM, 2003, STAT SINICA, V13, P1119