Gaussian process regression model to predict factor of safety of slope stability

被引:0
|
作者
Mahmoodzadeh, Arsalan [1 ]
Nejati, Hamid Reza [1 ]
Rezaie, Nafiseh [2 ]
Mohammed, Adil Hussein [3 ]
Ibrahim, Hawkar Hashim [4 ]
Mohammadi, Mokhtar [5 ]
Rashidi, Shima [6 ]
机构
[1] Tarbiat Modares Univ, Sch Engn, Rock Mech Div, Tehran, Iran
[2] Univ Qom, Fac Engn, Dept Civil Engn, Qom, Iran
[3] Cihan Univ Erbil, Fac Engn, Dept Commun & Comp Engn, Erbil, Kurdistan Regio, Iraq
[4] Salahaddin Univ Erbil, Coll Engn, Dept Civil Engn, Erbil 44002, Kurdistan Regio, Iraq
[5] Lebanese French Univ, Coll Engn & Comp Sci, Dept Informat Technol, Erbil, Kurdistan Regio, Iraq
[6] Univ Human Dev, Coll Sci & Technol, Dept Comp Sci, Sulaymaniyah, Kurdistan Regio, Iraq
关键词
factor of safety; feature selection; Gaussian process regression; machine learning; slope stability; ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR MACHINE;
D O I
10.12989/gae.2022.31.5.453
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
. It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 50 条
  • [11] Application of Gaussian Process Regression Model to Predict Discharge Coefficient of Gated Piano Key Weir
    Masood Akbari
    Farzin Salmasi
    Hadi Arvanaghi
    Masoud Karbasi
    Davood Farsadizadeh
    Water Resources Management, 2019, 33 : 3929 - 3947
  • [12] Application of Gaussian Process Regression Model to Predict Discharge Coefficient of Gated Piano Key Weir
    Akbari, Masood
    Salmasi, Farzin
    Arvanaghi, Hadi
    Karbasi, Masoud
    Farsadizadeh, Davood
    WATER RESOURCES MANAGEMENT, 2019, 33 (11) : 3929 - 3947
  • [13] The Gaussian Process Autoregressive Regression Model (GPAR)
    Requeima, James
    Tebbutt, Will
    Bruinsma, Wessel
    Turner, Richard E.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [14] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [15] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163
  • [16] A Gaussian Process Regression Model for Distribution Inputs
    Bachoc, Francois
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Venet, Nil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6620 - 6637
  • [17] Robust Gaussian process regression with a bias model
    Park, Chiwoo
    Borth, David J.
    Wilson, Nicholas S.
    Hunter, Chad N.
    Friedersdorf, Fritz J.
    PATTERN RECOGNITION, 2022, 124
  • [18] Model Learning with Local Gaussian Process Regression
    Nguyen-Tuong, Duy
    Seeger, Matthias
    Peters, Jan
    ADVANCED ROBOTICS, 2009, 23 (15) : 2015 - 2034
  • [19] Factor of safety of slope stability from deformation energy
    Xiao, Shiguo
    Guo, Wei Dong
    Zeng, Jinxiu
    CANADIAN GEOTECHNICAL JOURNAL, 2018, 55 (02) : 296 - 302
  • [20] Analysis of Reliability on Slope Stability Based on Safety Factor
    Lv, Dawei
    Shi, Baoguo
    Wang, Fei
    Xu, Guanjun
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 130 - +