Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants

被引:336
|
作者
Chen, C
Kolodner, RD [1 ]
机构
[1] Univ Calif San Diego, Sch Med, Ludwig Inst Canc Res, Ctr Canc, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Sch Med, Dept Med, La Jolla, CA 92093 USA
关键词
D O I
10.1038/12687
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions(1-3). In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis(3,4). The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology(5-8). We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-medialed GCR formations. To further our understanding of GCR formation, we have developed a novel mutator assay in 5. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600-5,000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology-mediated GCRs (RAD50/MRE11/XRS2).
引用
收藏
页码:81 / 85
页数:5
相关论文
共 50 条
  • [1] Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    Clark Chen
    Richard D. Kolodner
    Nature Genetics, 1999, 23 : 81 - 85
  • [2] DETECTION OF RECOMBINATION DEFECTIVE MUTANTS IN SACCHAROMYCES CEREVISIAE
    RODARTE, U
    FOGEL, S
    MORTIMER, RK
    GENETICS, 1968, 60 (1P2) : 216 - &
  • [3] Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae
    Schmidt, Kristina H.
    Pennaneach, Vincent
    Putnam, Christopher D.
    Kolodner, Richard D.
    DNA REPAIR, PT B, 2006, 409 : 462 - 476
  • [4] Saccharomyces cerevisiae mutants defective in plasmid chromosome recombination
    EliasArnanz, M
    Firmenich, AA
    Berg, P
    MOLECULAR AND GENERAL GENETICS, 1996, 252 (05): : 530 - 538
  • [5] Ploidy influences cellular responses to gross chromosomal rearrangements in saccharomyces cerevisiae
    Paul P Jung
    Emilie S Fritsch
    Corinne Blugeon
    Jean-Luc Souciet
    Serge Potier
    Sophie Lemoine
    Joseph Schacherer
    Jacky de Montigny
    BMC Genomics, 12
  • [6] Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae
    Myung, K
    Smith, S
    Kolodner, RD
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (45) : 15980 - 15985
  • [7] Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae
    Jung, Paul P.
    Fritsch, Emilie S.
    Blugeon, Corinne
    Souciet, Jean-Luc
    Potier, Serge
    Lemoine, Sophie
    Schacherer, Joseph
    de Montigny, Jacky
    BMC GENOMICS, 2011, 12
  • [8] Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae
    Motegi, A
    Kuntz, K
    Majeed, A
    Smith, S
    Myung, K
    MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (04) : 1424 - 1433
  • [9] Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements
    Saed Mohebi
    Ken’Ichi Mizuno
    Adam Watson
    Antony M. Carr
    Johanne M. Murray
    Nature Communications, 6
  • [10] Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements
    Mohebi, Saed
    Mizuno, Ken'Ichi
    Watson, Adam
    Carr, Antony M.
    Murray, Johanne M.
    NATURE COMMUNICATIONS, 2015, 6