Materials corrosion for thermal energy storage systems in concentrated solar power plants

被引:152
|
作者
Walczak, Magdalena [1 ,2 ]
Pineda, Fabiola [1 ,3 ]
Fernandez, Angel G. [4 ]
Mata-Torres, Carlos [2 ]
Escobar, Rodrigo A. [1 ,2 ]
机构
[1] Pontificia Univ Catolica Chile, Escuela Ingn, Dept Mech & Met Engn, Vicuna Mackenna 4860,Macul 6904411, Santiago, Chile
[2] Pontificia Univ Catolica Chile, UC Energy Res Ctr, Av Vicuna Mackenna 4860,Macul 6904411, Santiago, Chile
[3] Pontificia Univ Catolica Chile, Sch Civil Construct, Macul 6904411, Santiago, Chile
[4] Univ Antofagasta, Energy Dev Ctr, Av Univ Antofagasta, Antofagasta 02800, Chile
关键词
Concentrated solar power (CSP); Heat transfer fluid (HTF); Thermal energy storage (TES); Corrosion; Molten salt; MOLTEN NITRATE SALTS; HIGH-TEMPERATURE CORROSION; PHASE-CHANGE MATERIALS; HEAT-TRANSFER FLUIDS; CYCLE FATIGUE BEHAVIOR; LOW-CR STEEL; HOT CORROSION; STAINLESS-STEELS; EUTECTIC SALT; INCOLOY; 800;
D O I
10.1016/j.rser.2018.01.010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The current commercial deployment of concentrating solar power (CSP) relies on a system of thermal energy storage (TES) for round the clock generation of electricity. The heat harvested by a system of collectors, either parabolic troughs or a heliostat field, is transferred by means of heat transfer fluid (HTF) to a storage tank, where it is kept until required for power generation. In the implemented systems, the storage of heat is accomplished by a mixture of salts characterized by an optimum set of properties required at the desired temperatures of operation. In liquid phase, the salt mixture represents an ionic conductor providing conditions for electrochemical degradation of materials when in direct contact. The risk of materials failure is further increased by thermal cycling and the possibility of mechanical stress. This paper describes the possible corrosion issues that might affect a TES system considering generalized and localized corrosion, as well as flow accelerated and mechanically assisted corrosion for the specific operation conditions of CSP plants. A comprehensive summary of uniform corrosion rates determined for common and less common alloys considered for application in TES is provided, along with discussion of the applicability for evaluation of possible corrosion damage in an actual CSP plant.
引用
收藏
页码:22 / 44
页数:23
相关论文
共 50 条
  • [41] Power cycles integration in concentrated solar power plants with energy storage based on calcium looping
    Ortiz, C.
    Chacartegui, R.
    Valverde, J. M.
    Alovisio, A.
    Becerra, J. A.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 815 - 829
  • [42] Generalized diagrams of energy storage efficiency for latent heat thermal storage system in concentrated solar power plant
    Chirino, Hermes
    Xu, Ben
    Xu, Xinhai
    Guo, Penghua
    APPLIED THERMAL ENGINEERING, 2018, 129 : 1595 - 1603
  • [43] Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance
    Prieto, Cristina
    Cabeza, Luisa F.
    APPLIED ENERGY, 2019, 254
  • [44] Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants
    Ong, Teng-Cheong
    Sarvghad, Madjid
    Lippiatt, Kaleb
    Griggs, Lewis
    Ryan, Hollie
    Will, Geoffrey
    Steinberg, Theodore A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 131
  • [45] THERMAL ENERGY STORAGE WITH CONCENTRATED SOLAR POWER FOR A MORE RELIABLE AND AFFORDABLE ELECTRICITY TO INDUSTRIAL APPLICATIONS
    Bennouna, El Ghali
    Mimet, Abdelaziz
    PROCEEDINGS OF THE 11TH ISES EUROSUN 2016 CONFERENCE, 2017, : 448 - 455
  • [46] Thermochemical energy storage at high temperature for concentrated solar power plants: a critical review
    Bielsa, Daniel
    Faik, Abdessamad
    Arias, Pedro L.
    DYNA, 2023, 98 (06): : 612 - 619
  • [47] Thermal energy storage evaluation in direct steam generation solar plants
    Prieto, Cristina
    Rodriguez, Alfonso
    Patino, David
    Cabeza, Luisa F.
    SOLAR ENERGY, 2018, 159 : 501 - 509
  • [48] Thermal energy storage for direct steam generation concentrating solar power plants: Concept and materials selection
    Prieto, Cristina
    Cabeza, Luisa F.
    Pavon-Moreno, M. Carmen
    Palomo, Elena
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [49] Latest Advances in Thermal Energy Storage for Solar Plants
    Barrasso, Martina
    Langella, Giuseppe
    Amoresano, Amedeo
    Iodice, Paolo
    PROCESSES, 2023, 11 (06)
  • [50] Single-tank thermal energy storage systems for concentrated solar power: Flow distribution optimization for thermocline evolution management
    Lou, Wanruo
    Fan, Yilin
    Luo, Lingai
    JOURNAL OF ENERGY STORAGE, 2020, 32