Limits on Enstrophy Growth for Solutions of the Three-dimensional Navier-Stokes Equations

被引:45
作者
Lu, Lu [1 ]
Doering, Charles R. [2 ,3 ]
机构
[1] Wachovia Secur, New York, NY 10152 USA
[2] Univ Michigan, Dept Math & Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; fluid dynamics; vorticiry; enstrophy;
D O I
10.1512/iumj.2008.57.3716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The enstrophy, the square of the L-2 norm of the vorticiry field, is a key quantity for the determination of regularity and uniqueness properties for solutions to the Navier-Stokes equations. In this paper we investigate the maximal enstrophy generation rate for velocity fields with a fixed amount of enstrophy, as a function of the magnitude of the enstrophy via numerical solution of the Euler-Lagrange equations for the associated variational problem. The veracity of the novel computational scheme is established by utilizing the exactly soluble version of the problem for Burgers' equation as a benchmark. The results for the three dimensional Navier-Stokes equations are found to saturate functional estimates for the maximal enstrophy production rate as a function of enstrophy.
引用
收藏
页码:2693 / 2727
页数:35
相关论文
共 23 条
  • [1] Adams R., 1975, Sobolev Spaces
  • [2] [Anonymous], 2006, THESIS
  • [3] SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION
    BASDEVANT, C
    DEVILLE, M
    HALDENWANG, P
    LACROIX, JM
    OUAZZANI, J
    PEYRET, R
    ORLANDI, P
    PATERA, AT
    [J]. COMPUTERS & FLUIDS, 1986, 14 (01) : 23 - 41
  • [4] BASDEVANT C, 1982, MODELE SIMULATION NU
  • [5] Batchelor G. K., 1967, INTRO FLUID DYNAMICS
  • [6] Boyd JP., 2001, CHEBYSHEV FOURIER SP
  • [7] CHARLES R, 1995, APPL ANAL NAVIER STO
  • [8] HEAD-ON COLLISION OF 2 COAXIAL VORTEX RINGS - EXPERIMENT AND COMPUTATION
    CHU, CC
    WANG, CT
    CHANG, CC
    CHANG, RY
    CHANG, WT
    [J]. JOURNAL OF FLUID MECHANICS, 1995, 296 : 39 - 71
  • [9] EXPONENTIAL DECAY-RATE OF THE POWER SPECTRUM FOR SOLUTIONS OF THE NAVIER-STOKES EQUATIONS
    DOERING, CR
    TITI, ES
    [J]. PHYSICS OF FLUIDS, 1995, 7 (06) : 1384 - 1390
  • [10] Evtushenko Y. G., 1994, Optimization Methods and Soft- ware, P237