Analysis of depth redistribution of implanted Fe near SiO2/Si interface

被引:2
|
作者
Hoshino, Y. [1 ]
Yokoyama, A. [1 ]
Yachida, G. [1 ]
Nakata, J. [1 ]
机构
[1] Kanangawa Univ, Dept Math & Phys, Hiratsuka, Kanagawa 2591293, Japan
关键词
Ion implantation; Rutherford backscattering spectroscopy; Diffusion process; Cluster aggregation; ION; THIN;
D O I
10.1016/j.nimb.2013.04.064
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have studied diffusion and clustering processes of room-temperature (RT)-implanted Fe ions in a SiO2/Si structure during annealing at 600 and 800 degrees C temperatures. The depth profile of implanted Fe was analyzed by Rutherford backscattering spectroscopy (RBS). In the previous study, we found that the hot-implanted Fe ions near the SiO2/Si interface at high substrate temperatures of 600 and 800 degrees C were distributed significantly different from the result predicted in the TRIM simulation. We think that the diffusion phenomena during the ion implantation at such elevated temperatures are recognized to be strongly enhanced by ion-beam-irradiation effect. In this study, to simplify the diffusion phenomenon, we particularly treat thermal diffusion process of RT-Fe implantation around the SiO2/Si interface in the post annealing at high temperatures. It is clearly seen that Fe atoms post-annealed at 800 degrees C are preferably gathered at a definitive depth in the SiO2 layer around 15 nm distances from the interface. We finally compare the Fe depth distribution for hot-implanted samples to that for the post-annealed ones by RBS analysis quantitatively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [21] Diffusion and Interaction of In and As Implanted into SiO2 Films
    I. E. Tyschenko
    M. Voelskow
    A. N. Mikhaylov
    D. I. Tetelbaum
    Semiconductors, 2019, 53 : 1004 - 1010
  • [22] Ion-beam synthesis of InSb nanocrystals at the Si/SiO2 interface
    Tyschenko, Ida
    Zhang, Ruonan
    Volodin, Vladimir
    Popov, Vladimir
    MATERIALS LETTERS, 2022, 306
  • [23] MOS memory structures by very-low-energy-implanted Si in thin SiO2
    Dimitrakis, P
    Kapetanakis, E
    Normand, P
    Skarlatos, D
    Tsoukalas, D
    Beltsios, K
    Claverie, A
    Benassayag, G
    Bonafos, C
    Chassaing, D
    Carrada, M
    Soncini, V
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 101 (1-3): : 14 - 18
  • [24] Luminescence band evolution in Si implanted SiO2 layer upon high temperature annealing
    Liu, BX
    Lan, AD
    Bai, XD
    MATERIALS CHEMISTRY AND PHYSICS, 1998, 54 (1-3) : 356 - 359
  • [25] Continuously tunable photoluminescence from Si+-implanted and thermally annealed SiO2 films
    Fischer, T
    PetrovaKoch, V
    Shcheglov, K
    Brandt, MS
    Koch, F
    THIN SOLID FILMS, 1996, 276 (1-2) : 100 - 103
  • [26] Effect of carbon implantation on visible luminescence and composition of Si-implanted SiO2 layers
    Tetelbaum, D. I.
    Mikhaylov, A. N.
    Vasiliev, V. K.
    Belov, A. I.
    Kovalev, A. I.
    Wainstein, D. L.
    Mendeleva, Yu. A.
    Finstad, T. G.
    Foss, S.
    Golan, Y.
    Osherov, A.
    SURFACE & COATINGS TECHNOLOGY, 2009, 203 (17-18) : 2658 - 2663
  • [27] Effects of thermal annealing on photoluminescence of Si+/C+ implanted SiO2 films
    Chen, Yin-Yu
    Chao, Der-Sheng
    Tsai, Hsu-Sheng
    Liang, Jenq-Horng
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 372 : 114 - 118
  • [28] SiO2 formation in oxygen-implanted silicon
    Ahilea, T
    Zolotoyabko, E
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 414 - 419
  • [29] Photoluminescence from Si and Er dual-implanted Si-rich thermal oxidation SiO2/Si thin films
    Xiao, ZS
    Xu, F
    Zhang, TH
    Cheng, GA
    Gu, LL
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2002, 22 (04) : 538 - 541
  • [30] Order-of-magnitude differences in retention of low-energy Ar implanted in Si and SiO2
    Wittmaack, Klaus
    Giordani, Andrew
    Umbel, Rachel
    Hunter, Jerry L., Jr.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (05):