Existence of a Reversible T-Point Heteroclinic Cycle in a Piecewise Linear Version of the Michelson System

被引:36
作者
Carmona, Victoriano [1 ]
Fernandez-Sanchez, Fernando [1 ]
Teruel, Antonio E. [2 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Escuela Super Ingn, Seville 41092, Spain
[2] Univ Illes Balears, Dept Matemat & Informat, Palma de Mallorca 07122, Spain
关键词
piecewise linear systems; heteroclinic orbits; invariant manifolds;
D O I
10.1137/070709542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proof of the existence of a global connection in differential systems is generally a difficult task. Some authors use numerical techniques to show this existence, even in the case of continuous piecewise linear systems. In this paper we give an analytical proof of the existence of a reversible T-point heteroclinic cycle in a continuous piecewise linear version of the widely studied Michelson system. The principal ideas of this proof can be extended to other piecewise linear systems.
引用
收藏
页码:1032 / 1048
页数:17
相关论文
共 28 条
[1]  
ANDRONOV AA, 1987, THEORY OSCILLATORS
[2]   POSSIBLE NEW STRANGE ATTRACTORS WITH SPIRAL STRUCTURE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) :573-579
[3]  
Bykov V. V., 2000, Amer. Math. Soc. Transl. Ser., V2, P87
[4]   THE BIFURCATIONS OF SEPARATRIX CONTOURS AND CHAOS [J].
BYKOV, VV .
PHYSICA D, 1993, 62 (1-4) :290-299
[5]  
Bykov VV., 1999, J MATH SCI-U TOKYO, V95, P2513
[6]   Invariant manifolds of periodic orbits for piecewise linear three-dimensional systems [J].
Carmona, V ;
Freire, E ;
Ponce, E ;
Torres, F .
IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (01) :71-91
[7]   On simplifying and classifying piecewise-linear systems [J].
Carmona, V ;
Freire, E ;
Ponce, E ;
Torres, F .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (05) :609-620
[8]  
CHUA LO, 1986, IEEE T CIRCUITS SYST, V33, P1097
[9]   TRANSITION TO STOCHASTICITY FOR A CLASS OF FORCED OSCILLATORS [J].
COULLET, P ;
TRESSER, C ;
ARNEODO, A .
PHYSICS LETTERS A, 1979, 72 (4-5) :268-270
[10]   New aspects in the unfolding of the nilpotent singularity of codimension three [J].
Dumortier, F ;
Ibáñez, S ;
Kokubu, H .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (01) :63-95