A STABILITY RESULT FOR AN INVERSE PROBLEM WITH INTEGRODIFFERENTIAL OPERATOR ON A FINITE INTERVAL

被引:1
作者
Mosazadeh, Seyfollah [1 ]
Koyunbakan, Hikmet [2 ]
机构
[1] Univ Kashan, Fac Math Sci, Dept Pure Math, Kashan, Iran
[2] Firat Univ, Fac Sci, Dept Math, Elazig, Turkey
关键词
inverse problem; integrodifferential equation; Volterra integral operator; uniqueness theorem; stability theorem; SPECTRAL PROBLEM; EIGENVALUE;
D O I
10.1216/jie.2020.32.77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A boundary value problem consisting of an integrodifferential equation, together with boundary conditions dependent on the spectral parameter, is investigated. The asymptotic behavior of the eigenvalues is studied, and we prove the uniqueness and the stability theorems for the solution of the inverse problem.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 2012, IRAN J SCI TECHNOL A
[2]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[3]   On an inverse spectral problem for a convolution integro-differential operator [J].
Buterin, Sergey Alexandrovich .
RESULTS IN MATHEMATICS, 2007, 50 (3-4) :173-181
[4]  
Conway J. B., 1995, GRADUATE TEXTS MATH, V158
[5]  
Freiling G., 2001, Inverse Sturm-Liouville problems and their applications
[6]  
Gesztesy F, 2000, COMMUN MATH PHYS, V211, P271
[7]   Half-Inverse spectral problems for Sturm-Liouville operators with singular potentials [J].
Hryniv, RO ;
Mykytyuk, YV .
INVERSE PROBLEMS, 2004, 20 (05) :1423-1444
[8]   The inverse nodal problem for a differential operator with an eigenvalue in the boundary condition [J].
Koyunbakan, Hikmet .
APPLIED MATHEMATICS LETTERS, 2008, 21 (12) :1301-1305
[9]  
Kreyszig E., 1978, Introduction to Functional Analysis With Applications
[10]   Inverse spectral problem for integro-differential operators [J].
Kuryshova, Yu. V. .
MATHEMATICAL NOTES, 2007, 81 (5-6) :767-777