Semi-supervised Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints

被引:0
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [1 ]
Miyamoto, Sadaaki [1 ]
机构
[1] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
来源
MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI) | 2010年 / 6408卷
关键词
semi-supervised clustering; agglomerative hierarchical clustering; centroid method; clusterwise tolerance; pairwise constraints;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, semi-supervised clustering has been remarked and discussed in many researches. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link are frequently used in order to improve clustering results by using prior knowledges or informations. In this paper, we will propose a clusterwise tolerance based pairwise constraint. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithms with centroid method based on it. Moreover, we will show the effectiveness of proposed method through numerical examples.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 17 条
  • [1] [Anonymous], 2006, BOOK REV IEEE T NEUR
  • [2] [Anonymous], 1999, INTRO CLUSTER ANAL T
  • [3] [Anonymous], 2004, P 10 ACM SIGKDD INT, DOI DOI 10.1145/1014052.1014062
  • [4] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
  • [5] Basu S, 2004, SIAM PROC S, P333
  • [6] Davidson I, 2005, LECT NOTES ARTIF INT, V3721, P59
  • [7] ENDO Y, 2005, P INT S NONL THEOR I, P345
  • [8] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [9] Klein D., 2002, P 19 INT C MACH LEAR, P307
  • [10] Semi-supervised graph clustering: a kernel approach
    Kulis, Brian
    Basu, Sugato
    Dhillon, Inderjit
    Mooney, Raymond
    [J]. MACHINE LEARNING, 2009, 74 (01) : 1 - 22