Comparison of Visual Datasets for Machine Learning

被引:27
作者
Gauen, Kent [1 ]
Dailey, Ryan [1 ]
Laiman, John [1 ]
Zi, Yuxiang [1 ]
Asokan, Nirmal [1 ]
Lu, Yung-Hsiang [1 ]
Thiruvathukal, George K. [2 ]
Shyu, Mei-Ling [3 ]
Chen, Shu-Ching [4 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Loyola Univ, Dept Comp Sci, Chicago, IL 60611 USA
[3] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33124 USA
[4] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA
来源
2017 IEEE 18TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI 2017) | 2017年
基金
美国国家科学基金会;
关键词
OBJECT;
D O I
10.1109/IRI.2017.59
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the greatest technological improvements in recent years is the rapid progress using machine learning for processing visual data. Among all factors that contribute to this development, datasets with labels play crucial roles. Several datasets are widely reused for investigating and analyzing different solutions in machine learning. Many systems, such as autonomous vehicles, rely on components using machine learning for recognizing objects. This paper compares different visual datasets and frameworks for machine learning. The comparison is both qualitative and quantitative and investigates object detection labels with respect to size, location, and contextual information. This paper also presents a new approach creating datasets using real-time, geo-tagged visual data, greatly improving the contextual information of the data. The data could be automatically labeled by cross-referencing information from other sources (such as weather).
引用
收藏
页码:346 / 355
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2012, EUR C COMP VIS
[2]  
[Anonymous], 2010, Proceedings of the ACM SIGKDD Workshop on Human Computation, noeth, DOI [10.1145/1837885.1837906, DOI 10.1145/1837885.1837906]
[3]  
Chen W., 2015, IEEE INT C CLOUD COM
[4]  
Dailey R., 2017, IMAGING MULTIMEDIA A
[5]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[6]   Pedestrian Detection: An Evaluation of the State of the Art [J].
Dollar, Piotr ;
Wojek, Christian ;
Schiele, Bernt ;
Perona, Pietro .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) :743-761
[7]  
Dollár P, 2009, PROC CVPR IEEE, P304, DOI 10.1109/CVPRW.2009.5206631
[8]  
Doyle A., 2012, EYES EVERYWHERE GLOB, Vxiv
[9]  
Everingham M, 2006, LECT NOTES ARTIF INT, V3944, P117
[10]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136