Mesoscale Physicochemical Interactions in Lithium-Sulfur Batteries: Progress and Perspective

被引:11
作者
Liu, Zhixiao [1 ]
Mistry, Aashutosh [1 ]
Mukherjee, Partha P. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, Energy & Transport Sci Lab, College Stn, TX 77840 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
lithium-sulfur batteries; mesoscale modeling approach; polysulfide trapping; Li2S precipitation; cathode microstructure; performance prediction; LI-S BATTERIES; NITROGEN-DOPED CARBON; HIGH-PERFORMANCE; ENERGY-STORAGE; MATHEMATICAL-MODEL; DISCHARGE CAPACITY; 1ST PRINCIPLES; POROUS CARBON; ANODE SURFACE; CATHODE HOST;
D O I
10.1115/1.4037785
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The shuttle effect and poor conductivity of the discharge products are among the primary impediments and scientific challenges for lithium-sulfur batteries. The lithium-sulfur battery is a complex energy storage system, which involves multistep electrochemical reactions, insoluble polysulfide precipitation in the cathode, soluble polysulfide transport, and self-discharge caused by chemical reactions between polysulfides and Li metal anode. These phenomena happen at different length and time-scales and are difficult to be entirely gauged by experimental techniques. In this paper, we reviewed the multiscale modeling studies on lithium-sulfur batteries: (1) the atomistic simulations were employed to seek alternative materials for mitigating the shuttle effect; (2) the growth kinetics of Li2S film and corresponding surface passivation were investigated by the interfacial model based on findings from atomistic simulations; (3) the nature of Li2S2, which is the only solid intermediate product, was revealed by the density functional theory simulation; and (4) macroscale models were developed to analyze the effect of reaction kinetics, sulfur loading, and transport properties on the cell performance. The challenge for the multiscale modeling approach is translating the microscopic information from atomistic simulations and interfacial model into the meso-/macroscale model for accurately predicting the cell performance.
引用
收藏
页数:10
相关论文
共 92 条
[1]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[2]   Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene [J].
Aufray, Bernard ;
Kara, Abdelkader ;
Vizzini, Sebastien ;
Oughaddou, Hamid ;
Leandri, Christel ;
Ealet, Benedicte ;
Le Lay, Guy .
APPLIED PHYSICS LETTERS, 2010, 96 (18)
[3]   Poromechanical effect in the lithium-sulfur battery cathode [J].
Barai, Pallab ;
Mistry, Aashutosh ;
Mukherjee, Partha P. .
EXTREME MECHANICS LETTERS, 2016, 9 :359-370
[4]   A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery [J].
Barghamadi, Marzieh ;
Kapoor, Ajay ;
Wen, Cuie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1256-A1263
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[6]   Lithium-sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance [J].
Brueckner, Jan ;
Thieme, Soeren ;
Grossmann, Hannah Tamara ;
Doerfler, Susanne ;
Althues, Holger ;
Kaskel, Stefan .
JOURNAL OF POWER SOURCES, 2014, 268 :82-87
[7]   Effects of High and Low Salt Concentration in Electrolytes at Lithium-Metal Anode Surfaces [J].
Camacho-Forero, Luis E. ;
Smith, Taylor W. ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :182-194
[8]   Reactivity at the Lithium-Metal Anode Surface of Lithium-Sulfur Batteries [J].
Camacho-Forero, Luis E. ;
Smith, Taylor W. ;
Bertolini, Samuel ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) :26828-26839
[9]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696
[10]   Sulfidation of NiMn-Layered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance [J].
Chen, Jingwei ;
Wang, Xu ;
Wang, Jiangxin ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)