Induced subgraphs of hypercubes

被引:3
作者
Agnarsson, Geir [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
D O I
10.1016/j.ejc.2012.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(k) denote the k-dimensional hypercube on 2(k) vertices. A vertex in a subgraph of Q(k) is full if its degree is k. We apply the Kruskal-Katona Theorem to compute the maximum number of full vertices an induced subgraph on n <= 2(k) vertices of Q(k) can have, as a function of k and n. This is then used to determine min(max(vertical bar V(H-1)vertical bar. vertical bar V(H-2)vertical bar)) where (i) H-1 and H-2 are induced subgraphs of Q(k), and (ii) together they cover all the edges of Q(k), that is E(H-1) boolean OR E(H-2) = E(Q(k)). (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 14 条
[1]  
Agnarsson Geir, ARXIV11064997V1MATHC
[2]  
Delange H., 1975, ENSEIGN MATH, V21, P31
[3]  
Greene Daniel H., 1990, PROGR COMPUTER SCI A, V1
[4]  
Grunbaum B., 2003, GRADUATE TEXTS MATH
[5]  
Harary F., 1976, J. Comb. Inf. Syst. Sci, V1, P1
[6]   NOTE ON EDGES OF N-CUBE [J].
HART, S .
DISCRETE MATHEMATICS, 1976, 14 (02) :157-163
[7]  
Hibi T., 1992, Algebraic combinatorics on convex polytopes
[8]  
Katona G.O.H., 1968, Theory of graphs, P187
[9]  
Kruskal JB., 1963, MATH OPTIMIZATION TE, V10, P251
[10]  
LAWRENCE JO, COMMUNICATION