The α-spectral radius of general hypergraphs

被引:2
作者
Lin, Hongying [1 ]
Zhou, Bo [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hypergraph; Adjacency tensor; alpha-Spectral radius; Hypertrees; Unicyclic hypergraphs; Pendent edge; EIGENVALUES; TENSORS; LAPLACIAN;
D O I
10.1016/j.amc.2020.125449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a hypergraph H of order n with rank k >= 2, denote by D(H) and A(H) the degree diagonal tensor and the adjacency tensor of H , respectively, of order k and dimension n . For real number alpha with 0 <= alpha <= 1, the alpha-spectral radius of H is defined to be the spectral radius of the symmetric tensor alpha D(H) + (1 - alpha)A(H). First, we establish a upper bound on the alpha-spectral radius of connected irregular hypergraphs. Then we propose three local trans-formations of hypergraphs that increase the alpha-spectral radius. We also identify the unique hypertree with the largest alpha-spectral radius and the unique hypergraph with the largest alpha-spectral radius among hypergraphs of given number of pendent edges, and discuss the unique hypertrees with the next largest alpha-spectral radius and the unicyclic hypergraphs with the largest alpha-spectral radius. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 24 条
  • [1] Berge C., 1989, MATH LIB, V45
  • [2] Spectra of uniform hypergraphs
    Cooper, Joshua
    Dutle, Aaron
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3268 - 3292
  • [3] ON THE α-SPECTRAL RADIUS OF UNIFORM HYPERGRAPHS
    Guo, Haiyan
    Zhou, Bo
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 559 - 575
  • [4] Guo HY, ARXIV180503456
  • [5] Hofmeister M, 1997, LINEAR ALGEBRA APPL, V260, P43, DOI 10.1016/S0024-3795(96)00249-2
  • [6] A new eigenvalue inclusion set for tensors and its applications
    Li, Chaoqian
    Chen, Zhen
    Li, Yaotang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 481 : 36 - 53
  • [7] Principal eigenvectors and spectral radii of uniform hypergraphs
    Li, Haifeng
    Zhou, Jiang
    Bu, Changjiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 273 - 285
  • [8] Li HH, 2016, J COMB OPTIM, V32, P741, DOI 10.1007/s10878-015-9896-4
  • [9] Lim LH, 2005, IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, P129
  • [10] On the α-spectral radius of irregular uniform hypergraphs
    Lin, Hongying
    Guo, Haiyan
    Zhou, Bo
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (02) : 265 - 277