Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique

被引:27
作者
Buecher, Axel [1 ]
Ruppert, Martin [2 ]
机构
[1] Ruhr Univ Bochum, D-44780 Bochum, Germany
[2] Univ Cologne, Grad Sch Risk Management, D-50923 Cologne, Germany
关键词
Change point test; Copula; Empirical copula process; Nonparametric estimation; Time series; Strong mixing; Multiplier central limit theorem; EMPIRICAL PROCESSES; DYNAMIC COPULA; BOOTSTRAP; DEPENDENCE; SELECTION; THEOREMS;
D O I
10.1016/j.jmva.2012.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Considering multivariate strongly mixing time series, nonparametric tests for a constant copula with specified or unspecified change point (candidate) are derived; the tests are consistent against general alternatives. A tapered block multiplier technique based on serially dependent multiplier random variables is provided to estimate p-values of the test statistics. Size and power of the tests in finite samples are evaluated with Monte Carlo simulations. The block multiplier technique might have several other applications for statistical inference on copulas of serially dependent data. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 229
页数:22
相关论文
共 51 条
  • [1] [Anonymous], 1997, LIMIT THEOREMS CHANG
  • [2] [Anonymous], 2002, THESIS U CALIFORNIA
  • [3] [Anonymous], 1994, MIXING PROPERTIES EX
  • [4] Estimating multiple breaks one at a time
    Bai, JS
    [J]. ECONOMETRIC THEORY, 1997, 13 (03) : 315 - 352
  • [5] Brodsky B., 1993, NONPARAMETRIC METHOD
  • [6] Bucher A., 2011, ARXIV11112778
  • [7] Bucher A., 2011, THESIS RUHR U BOCHUM
  • [8] A test for Archimedeanity in bivariate copula models
    Buecher, Axel
    Dette, Holger
    Volgushev, Stanislav
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 : 121 - 132
  • [9] A note on bootstrap approximations for the empirical copula process
    Buecher, Axel
    Dette, Holger
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1925 - 1932
  • [10] Block length selection in the bootstrap for time series
    Bühlmann, P
    Künsch, HR
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (03) : 295 - 310