On the dimension of Bernoulli convolutions for all transcendental parameters

被引:30
作者
Varju, Peter P. [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Cambridge, England
基金
欧洲研究理事会;
关键词
Bernoulli convolution; self-similar measure; dimension of measures; Mahler measure; entropy; SELF-SIMILAR SETS; ABSOLUTE CONTINUITY; FAMILY;
D O I
10.4007/annals.2019.189.3.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bernoulli convolution nu(lambda) with parameter lambda is an element of (0, 1) is the probability measure supported on R that is the law of the random variable Sigma +/-lambda(n), where the +/- are independent fair coin-tosses. We prove that dim nu(lambda) = 1 for all transcendental lambda is an element of (1/2, 1).
引用
收藏
页码:1001 / 1011
页数:11
相关论文
共 23 条
[1]  
Akiyama S., 2018, 180107118V1 ARXIV
[2]  
Bombieri BG06 Enrico, 2006, New Mathematical Monographs, V4, DOI [10.1017/CBO9780511542879, DOI 10.1017/CBO9780511542879]
[3]  
Breuillard E., 2018, J ANAL MATH
[4]  
Breuillard E., 2018, ANN PROBAB
[5]   On a family of symmetric Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 :974-976
[6]   On the smoothness properties of a family of Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :180-186
[7]  
Falconer Kenneth, 1997, TECHNIQUES FRACTAL G
[8]   Dimension Theory of Iterated Function Systems [J].
Feng, De-Jun ;
Hu, Huyi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) :1435-1500
[9]  
Garsia Adriano M., 1962, Trans. Amer. Math. Soc., V102, P409, DOI [10.2307/1993615, DOI 10.2307/1993615]
[10]   ENTROPY AND SINGULARITY OF INFINITE CONVOLUTIONS [J].
GARSIA, AM .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (04) :1159-&