The Ideal Transformer Method (ITM) and the Damping Impedance Method (DIM) are the most widely used techniques for connecting power equipment to a Power-Hardware-in-the-Loop (PHIL) real-time simulation. Both methods have been studied for their stability and accuracy in PHIL simulations, but neither have been analyzed when the hardware is providing grid-support services with volt-var, frequency-watt, and fixed power factor functions. In this work, we experimentally validate the two methods of connecting a physical PV inverter to a PHIL system and evaluate them for dynamic stability and accuracy when operating with grid-support functions. It was found that the DIM Low Pass Lead Filter (LPF LD) method was the best under unity and negative power factor conditions, but the ITM LPF LD method was preferred under positive power factor conditions.