Nonlinear maximum principles for dissipative linear nonlocal operators and applications

被引:232
作者
Constantin, Peter [1 ]
Vicol, Vlad [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Nonlinear lower bound; maximum-principle; fractional Laplacian; anti-symmetrically forced Euler equations; nonlocal dissipation; GLOBAL WELL-POSEDNESS; EULER EQUATIONS; REGULARITY;
D O I
10.1007/s00039-012-0172-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a family of nonlinear maximum principles for linear dissipative nonlocal operators, that are general, robust, and versatile. We use these nonlinear bounds to provide transparent proofs of global regularity for critical SQG and critical d-dimensional Burgers equations. In addition we give applications of the nonlinear maximum principle to the global regularity of a slightly dissipative anti-symmetric perturbation of 2D incompressible Euler equations and generalized fractional dissipative 2D Boussinesq equations.
引用
收藏
页码:1289 / 1321
页数:33
相关论文
共 30 条
[1]  
[Anonymous], 1995, Asterisque
[2]  
Bardos C, 2007, RUSS MATH SURV+, V62, P409, DOI [10.1070/RM2007v062n03ABEH004410, 10.4213/rm6811]
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[5]  
Cao C., ARXIV11082678V1MATHA
[6]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[7]   Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations [J].
Chae, Dongho ;
Constantin, Peter ;
Wu, Jiahong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (01) :35-62
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[10]  
Constantin P., 2006, LECT NOTES MATH, V1871