Seismic noise attenuation using an online subspace tracking algorithm

被引:6
作者
Zhou, Yatong [1 ]
Li, Shuhua [1 ]
Zhang, Dong [2 ]
Chen, Yangkang [3 ,4 ]
机构
[1] Hebei Univ Technol, Tianjin Key Lab Elect Mat & Devices, Sch Elect & Informat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
[2] Delft Univ Technol, Dept Imaging Phys, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Univ Texas Austin, Bur Econ Geol, John A & Katherine G Jackson Sch Geosci, Univ Stn, Box 10, Austin, TX 78713 USA
[4] Oak Ridge Natl Lab, Natl Ctr Computat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA
基金
中国国家自然科学基金;
关键词
Image processing; Inverse theory; Time-series analysis; DATA INTERPOLATION; SEISLET TRANSFORM; SPARSE; DECOMPOSITION; RANK; REPRESENTATIONS; RECONSTRUCTION; SUPPRESSION; CONSTRAINTS; MORPHOLOGY;
D O I
10.1093/gji/ggaa187
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
引用
收藏
页码:1765 / 1788
页数:24
相关论文
共 81 条
[1]   LATERAL PREDICTION FOR NOISE ATTENUATION BY T-X AND F-X TECHNIQUES [J].
ABMA, R ;
CLAERBOUT, J .
GEOPHYSICS, 1995, 60 (06) :1887-1896
[2]   Independent simultaneous source acquisition and processing [J].
Abma, Ray ;
Howe, David ;
Foster, Mark ;
Ahmed, Imtiaz ;
Tanis, Mehmet ;
Zhang, Qie ;
Arogunmati, Adeyemi ;
Alexander, Gino .
GEOPHYSICS, 2015, 80 (06) :WD37-WD44
[3]  
Aharchaou M., 2017, 87 ANN INT M SEG, P4950, DOI [10.1190/segam2017-17631902.1, DOI 10.1190/SEGAM2017-17631902.1]
[4]  
[Anonymous], 2012, Matrix computations
[5]   Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation [J].
Anvari, Rasoul ;
Siahsar, Mohammad Amir Nazari ;
Gholtashi, Saman ;
Kahoo, Amin Roshandel ;
Mohammadi, Mokhtar .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6574-6581
[6]  
Balzano L., 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P704, DOI 10.1109/ALLERTON.2010.5706976
[7]   Local singular value decomposition for signal enhancement of seismic data [J].
Bekara, Maiza ;
van der Baan, Mirko .
GEOPHYSICS, 2007, 72 (02) :V59-V65
[8]   Changing the mindset in seismic data acquisition [J].
Delft University of Technology, Delft, Netherlands .
Leading Edge (Tulsa, OK), 2008, 27 (07) :924-938
[9]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[10]  
Canales, 1984, 54 ANN INT M SEG, P525, DOI DOI 10.1190/1.1894168