Part IV Statistical Inference for Epidemic Processes in a Homogeneous Community Introduction

被引:0
|
作者
Britton, Tom [1 ]
Pardoux, Etienne [2 ]
Ball, Frank
Laredo, Catherine
Sirl, David
Viet Chi Tran
机构
[1] Stockholm Univ, Dept Math, Stockholm, Sweden
[2] Aix Marseille Univ, Inst Math Marseille, Marseille, France
来源
STOCHASTIC EPIDEMIC MODELS WITH INFERENCE | 2019年 / 2255卷
关键词
APPROXIMATE BAYESIAN COMPUTATION; HIDDEN MARKOV-MODELS; MONTE-CARLO; PARAMETER-ESTIMATION; DIFFUSION; TRANSMISSION; EM; CONVERGENCE; LIKELIHOOD; DYNAMICS;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:327 / +
页数:29
相关论文
共 18 条
  • [1] Statistical inference for oscillation processes
    Dahlhaus, Rainer
    Dumont, Thierry
    Le Corff, Sylvain
    Neddermeyer, Jan C.
    STATISTICS, 2017, 51 (01) : 61 - 83
  • [2] Statistical mechanics of inference in epidemic spreading
    Braunstein, Alfredo
    Budzynski, Louise
    Mariani, Matteo
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [3] Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences
    Takenouchi, Takashi
    Kanamori, Takafumi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18 : 1 - 26
  • [4] A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation
    Kypraios, Theodore
    Neal, Peter
    Prangle, Dennis
    MATHEMATICAL BIOSCIENCES, 2017, 287 : 42 - 53
  • [5] Statistical Inference for Partially Observed Markov Processes via the R Package pomp
    King, Aaron A.
    Dao Nguyen
    Ionides, Edward L.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 69 (12):
  • [6] Randomized consistent statistical inference for random processes and fields
    Tempelman, Arkady
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2022, 25 (03) : 599 - 627
  • [7] Statistical inference for Vasicek-type model driven by Hermite processes
    Nourdin, Ivan
    Tran, T. T. Diu
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3774 - 3791
  • [8] Statistical inference in discretely observed fractional Ornstein-Uhlenbeck processes
    Li, Yicun
    Teng, Yuanyang
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [9] Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation
    Maria Ramos-Abalos, Eva
    Gutierrez-Sanchez, Ramon
    Nafidi, Ahmed
    MATHEMATICS, 2020, 8 (04)
  • [10] Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
    Xu, Xiaoguang
    Kypraios, Theodore
    O'Neill, Philip D.
    BIOSTATISTICS, 2016, 17 (04) : 619 - 633