Relation-Aware Alignment Attention Network for Multi-view Multi-label Learning

被引:1
|
作者
Zhang, Yi [1 ]
Shen, Jundong [1 ]
Yu, Cheng [1 ]
Wang, Chongjun [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Dept Comp Sci & Technol, Nanjing, Peoples R China
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II | 2021年 / 12682卷
基金
中国国家自然科学基金;
关键词
Multi-view multi-label; View interactions; Label correlations; Label-view dependence; Alignment attention; NEURAL-NETWORKS;
D O I
10.1007/978-3-030-73197-7_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-View Multi-Label (MVML) learning refers to complex objects represented by multi-view features and associated with multiple labels simultaneously. Modeling flexible view consistency is recently demanded, yet existing approaches cannot fully exploit the complementary information across multiple views and meanwhile preserve view-specific properties. Additionally, each label has heterogeneous features from multiple views and probably correlates with other labels via common views. Traditional strategy tends to select features that are distinguishable for all labels. However, globally shared features cannot handle the label heterogeneity. Furthermore, previous studies model view consistency and label correlations independently, where interactions between views and labels are not fully exploited. In this paper, we propose a novel MVML learning approach named Relation-aware Alignment attention Network (RAIN), where three types of relationships are considered. Specifically, 1) view interactions: capture diverse and complementary information for deep correlated subspace learning; 2) label correlations: adopt multi-head attention to learn semantic label embedding; 3) label-view dependence: dynamically extracts label-specific representation with the guidance of learned label embedding. Experiments on various MVML datasets demonstrate the effectiveness of RAIN compared with state-of-the-arts. We also experiment on one real-world Herbs dataset, which shows promising results for clinical decision support.
引用
收藏
页码:465 / 482
页数:18
相关论文
共 50 条
  • [1] Multi-view multi-label learning with view feature attention allocation
    Cheng, Yusheng
    Li, Qingyan
    Wang, Yibin
    Zheng, Weijie
    NEUROCOMPUTING, 2022, 501 : 857 - 874
  • [2] Consistency and diversity neural network multi-view multi-label learning
    Zhao, Dawei
    Gao, Qingwei
    Lu, Yixiang
    Sun, Dong
    Cheng, Yusheng
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [3] Latent Semantic Aware Multi-View Multi-Label Classification
    Zhang, Changqing
    Yu, Ziwei
    Hu, Qinghua
    Zhu, Pengfei
    Liu, Xinwang
    Wang, Xiaobo
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4414 - 4421
  • [4] Multi-view multi-label learning for image annotation
    Fuhao Zou
    Yu Liu
    Hua Wang
    Jingkuan Song
    Jie Shao
    Ke Zhou
    Sheng Zheng
    Multimedia Tools and Applications, 2016, 75 : 12627 - 12644
  • [5] Global and local multi-view multi-label learning
    Zhu, Changming
    Miao, Duoqian
    Wang, Zhe
    Zhou, Rigui
    Wei, Lai
    Zhang, Xiafen
    NEUROCOMPUTING, 2020, 371 : 67 - 77
  • [6] Incomplete Multi-view Multi-label Active Learning
    Qu, Chuanwei
    Wang, Kuangmeng
    Zhang, Hong
    Yu, Guoxian
    Domeniconi, Carlotta
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1294 - 1299
  • [7] Multi-view multi-label learning for image annotation
    Zou, Fuhao
    Liu, Yu
    Wang, Hua
    Song, Jingkuan
    Shao, Jie
    Zhou, Ke
    Zheng, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (20) : 12627 - 12644
  • [8] Incomplete multi-view partial multi-label learning
    Liu, Xinyuan
    Sun, Lijuan
    Feng, Songhe
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3289 - 3302
  • [9] Incomplete multi-view partial multi-label learning
    Xinyuan Liu
    Lijuan Sun
    Songhe Feng
    Applied Intelligence, 2022, 52 : 3289 - 3302
  • [10] Multi-View Multi-Label Learning With View-Label-Specific Features
    Huang, Jun
    Qu, Xiwen
    Li, Guorong
    Qin, Feng
    Zheng, Xiao
    Huang, Qingming
    IEEE ACCESS, 2019, 7 : 100979 - 100992