Estimation of regional surface CO2 fluxes with GOSAT observations using two inverse modeling approaches

被引:3
|
作者
Maksyutov, Shamil [1 ]
Takagi, Hiroshi [1 ]
Belikov, Dmitry A. [1 ,8 ]
Saeki, Tazu [1 ]
Zhuravlev, Ruslan [2 ]
Ganshin, Alexander [2 ]
Lukyanov, Alexander [2 ]
Yoshida, Yukio [1 ]
Oshchepkov, Sergey [1 ]
Bril, Andrey [1 ]
Saito, Makoto [3 ]
Oda, Tomohiro [4 ,5 ]
Valsala, Vinu K. [6 ]
Saito, Ryu [7 ]
Andres, Robert J.
Conway, Thomas [5 ]
Tans, Pieter [5 ]
Yokota, Tatsuya [1 ]
机构
[1] Natl Inst Environm Studies, CGER, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan
[2] Cent Aerol Observ, Dolgoprudnyi, Russia
[3] CEA Orme Merisiers, Lab Sci Climate & Environm, F-91191 Gif Sur Yvette, France
[4] Colorado State Univ, CIRA, Boulder, CO 80523 USA
[5] GMD, NOAA ESRL, Boulder, CO 80305 USA
[6] Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India
[7] GRIGC, JAMSTEC, Kanazawa Ku, Kanagawa 2360001, Japan
[8] Natl Inst Polar Res, Tachikawa, Tokyo 1908518, Japan
来源
REMOTE SENSING AND MODELING OF THE ATMOSPHERE, OCEANS, AND INTERACTIONS IV | 2012年 / 8529卷
关键词
carbon dioxide; remote sensing; inverse modeling; surface fluxes; ATMOSPHERIC CO2; CARBON-DIOXIDE; RETRIEVAL ALGORITHM; TECHNICAL NOTE; VALIDATION; SATELLITE; GASES; VARIABILITY; DELTA-C-13; BIOMASS;
D O I
10.1117/12.979664
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Inverse estimation of surface CO2 fluxes is performed with atmospheric transport model using ground-based and GOSAT observations. The NIES-retrieved CO2 column mixing (X-CO2) and column averaging kernel are provided by GOSAT Level 2 product v. 2.0 and PPDF-DOAS method. Monthly mean CO2 fluxes for 64 regions are estimated together with a global mean offset between GOSAT data and ground-based data. We used the fixed-lag Kalman filter to infer monthly fluxes for 42 sub-continental terrestrial regions and 22 oceanic basins. We estimate fluxes and compare results obtained by two inverse modeling approaches. In basic approach adopted in GOSAT Level 4 product v. 2.01, we use aggregation of the GOSAT observations into monthly mean over 5x5 degree grids, fluxes are estimated independently for each region, and NIES atmospheric transport model is used for forward simulation. In the alternative method, the model-observation misfit is estimated for each observation separately and fluxes are spatially correlated using EOF analysis of the simulated flux variability similar to geostatistical approach, while transport simulation is enhanced by coupling with a Lagrangian transport model Flexpart. Both methods use using the same set of prior fluxes and region maps. Daily net ecosystem exchange (NEE) is predicted by the Vegetation Integrative SImulator for Trace gases (VISIT) optimized to match seasonal cycle of the atmospheric CO2. Monthly ocean-atmosphere CO2 fluxes are produced with an ocean pCO(2) data assimilation system. Biomass burning fluxes were provided by the Global Fire Emissions Database (GFED); and monthly fossil fuel CO2 emissions are estimated with ODIAC inventory. The results of analyzing one year of the GOSAT data suggest that when both GOSAT and ground-based data are used together, fluxes in tropical and other remote regions with lower associated uncertainties are obtained than in the analysis using only ground-based data. With version 2.0 of L2 X-CO2 the fluxes appear reasonable for many regions and seasons, however there is a need for improving the L2 bias correction, data filtering and the inverse modeling method to reduce estimated flux anomalies visible in some areas. We also observe that application of spatial flux correlations with EOF-based approach reduces flux anomalies.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On the Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes
    Takagi, H.
    Saeki, T.
    Oda, T.
    Saito, M.
    Valsala, V.
    Belikov, D.
    Saito, R.
    Yoshida, Y.
    Morino, I.
    Uchino, O.
    Andres, R. J.
    Yokota, T.
    Maksyutov, S.
    SOLA, 2011, 7 : 161 - 164
  • [2] Inverse Modeling of CO2 Fluxes Using GOSAT Data and Multi-Year Ground-Based Observations
    Saeki, T.
    Maksyutov, S.
    Saito, M.
    Valsala, V.
    Oda, T.
    Andres, R. J.
    Belikov, D.
    Tans, P.
    Dlugokencky, E.
    Yoshida, Y.
    Morino, I.
    Uchino, O.
    Yokota, T.
    SOLA, 2013, 9 : 45 - 50
  • [3] An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements
    Houweling, S.
    Baker, D.
    Basu, S.
    Boesch, H.
    Butz, A.
    Chevallier, F.
    Deng, F.
    Dlugokencky, E. J.
    Feng, L.
    Ganshin, A.
    Hasekamp, O.
    Jones, D.
    Maksyutov, S.
    Marshall, J.
    Oda, T.
    O'Dell, C. W.
    Oshchepkov, S.
    Palmer, P. I.
    Peylin, P.
    Poussi, Z.
    Reum, F.
    Takagi, H.
    Yoshida, Y.
    Zhuravlev, R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (10) : 5253 - 5266
  • [4] A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations
    Wang, James S.
    Kawa, S. Randolph
    Collatz, G. James
    Sasakawa, Motoki
    Gatti, Luciana V.
    Machida, Toshinobu
    Liu, Yuping
    Manyin, Michael E.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (15) : 11097 - 11124
  • [5] Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study
    Gourdji, S. M.
    Hirsch, A. I.
    Mueller, K. L.
    Yadav, V.
    Andrews, A. E.
    Michalak, A. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (13) : 6151 - 6167
  • [6] Two-Year Comparison of Airborne Measurements of CO2 and CH4 With GOSAT at Railroad Valley, Nevada
    Tanaka, Tomoaki
    Yates, Emma
    Iraci, Laura T.
    Johnson, Matthew S.
    Gore, Warren
    Tadic, JovanM.
    Loewenstein, Max
    Kuze, Akihiko
    Frankenberg, Christian
    Butz, Andre
    Yoshida, Yukio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4367 - 4375
  • [7] Super-resolution reconstruction of GOSAT CO2 products using bicubic interpolation
    Xiang, Ru
    Yang, Hui
    Yan, Zhaojin
    Taha, Abdallah M. Mohamed
    Xu, Xiao
    Wu, Teng
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15187 - 15211
  • [8] Estimation of space heating CO2 emissions based only on CO2 fluxes observations
    Goret, Marine
    Masson, Valery
    Moine, Marie-Pierre
    Maurel, William
    Legain, Dominique
    Pigeon, Gregoire
    URBAN CLIMATE, 2025, 59
  • [9] Regional CO2 flux estimates for 2009-2010 based on GOSAT and ground-based CO2 observations
    Maksyutov, S.
    Takagi, H.
    Valsala, V. K.
    Saito, M.
    Oda, T.
    Saeki, T.
    Belikov, D. A.
    Saito, R.
    Ito, A.
    Yoshida, Y.
    Morino, I.
    Uchino, O.
    Andres, R. J.
    Yokota, T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (18) : 9351 - 9373
  • [10] EOF-based regression algorithm for the fast retrieval of atmospheric CO2 total column amount from the GOSAT observations
    Bril, Andrey
    Maksyutov, Shamil
    Belikov, Dmitry
    Oshchepkov, Sergey
    Yoshida, Yukio
    Deutscher, Nicholas M.
    Griffith, David
    Hase, Frank
    Kivi, Rigel
    Morino, Isamu
    Notholt, Justus
    Pollard, David F.
    Sussmann, Ralf
    Velazco, Voltaire A.
    Warneke, Thorsten
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 189 : 258 - 266