Automated Multi-Stage Compression of Neural Networks

被引:35
作者
Gusak, Julia [1 ]
Kholiavchenko, Maksym [2 ]
Ponomarev, Evgeny [1 ]
Markeeva, Larisa [1 ]
Blagoveschensky, Philip [1 ,3 ]
Cichocki, Andrzej [1 ]
Oseledets, Ivan [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Innopolis Univ, Innopolis, Russia
[3] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW) | 2019年
基金
俄罗斯科学基金会;
关键词
D O I
10.1109/ICCVW.2019.00306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-rank tensor approximations are very promising for compression of deep neural networks. We propose a new simple and efficient iterative approach, which alternates low-rank factorization with smart rank selection and fine-tuning. We demonstrate the efficiency of our method comparing to non-iterative ones. Our approach improves the compression rate while maintaining the accuracy for a variety of tasks.
引用
收藏
页码:2501 / 2508
页数:8
相关论文
共 26 条
  • [1] Subdominant Dense Clusters Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses
    Baldassi, Carlo
    Ingrosso, Alessandro
    Lucibello, Carlo
    Saglietti, Luca
    Zecchina, Riccardo
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [2] Denton Emily L, 2014, ADV NEURAL INFORM PR, P1269
  • [3] Dong X., 2017, MORE IS LESS MORE CO, P5840
  • [4] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [5] Gao XY, 2019, CONF REC ASILOMAR C, P930, DOI [10.1109/IEEECONF44664.2019.9048939, 10.1109/ieeeconf44664.2019.9048939]
  • [6] Harshman R. A., 1970, Foundations of the PARAFAC procedure: Models and conditions for an"explanatory"multimodal factor analysis
  • [7] He Y., P IEEE INT C COMP VI
  • [8] He Y., 2018, EUR C COMP VIS SEPT
  • [9] He Y., P 27 INT JOINT C ART
  • [10] Most Tensor Problems Are NP-Hard
    Hillar, Christopher J.
    Lim, Lek-Heng
    [J]. JOURNAL OF THE ACM, 2013, 60 (06)