Generalized unit and unitary Cayley graphs of finite rings

被引:11
作者
Chelvam, T. Tamizh [1 ]
Kathirvel, S. Anukumar [1 ]
机构
[1] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, Tamil Nadu, India
关键词
Commutative ring; Cayley graphs; chromatic number; Eulerian graphs;
D O I
10.1142/S0219498819500063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite commutative ring with nonzero identity and U(R) be the set of all units of R. The graph Gamma is the simple undirected graph with vertex set R in which two distinct vertices x and y are adjacent if and only if there exists a unit element u in U(R) such that x + uy is a unit in R. In this paper, we obtain degree of all vertices in Gamma and in turn provide a necessary and sufficient condition for Gamma to be Eulerian. Also, we give a necessary and sufficient condition for the complement (Gamma) over bar to be Eulerian, Hamiltonian and planar.
引用
收藏
页数:21
相关论文
共 22 条
  • [1] Akhtar R, 2009, ELECTRON J COMB, V16
  • [2] [Anonymous], 2006, INTRO GRAPH THEORY
  • [3] [Anonymous], 2007, ELECTRON J COMB, V14, P12
  • [4] UNIT GRAPHS ASSOCIATED WITH RINGS
    Ashrafi, N.
    Maimani, H. R.
    Pournaki, M. R.
    Yassemi, S.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) : 2851 - 2871
  • [5] On the genus of generalized unit and unitary Cayley graphs of a commutative ring
    Asir, T.
    Chelvam, T. Tamizh
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) : 444 - 458
  • [6] Asir T., 2015, ARS COMBIN
  • [7] Atiyah M. F., 1969, Introduction to commutative algebra
  • [8] Distances in zero-divisor and total graphs from commutative rings A survey
    Chelvam, T. Tamizh
    Asir, T.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (03) : 290 - 298
  • [9] Chelvam T. Tamizh, 2014, SPRINGER P MATH STAT, V174, DOI [10.1007/978-981-10-1651-6, DOI 10.1007/978-981-10-1651-6]
  • [10] NONPLANARITY OF UNIT GRAPHS AND CLASSIFICATION OF THE TOROIDAL ONES
    Das, A. K.
    Maimani, H. R.
    Pournaki, M. R.
    Yassemi, S.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 371 - 387