A minimum entropy principle of high order schemes for gas dynamics equations

被引:44
作者
Zhang, Xiangxiong [1 ]
Shu, Chi-Wang [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
SHOCK-CAPTURING SCHEMES; TIME DISCRETIZATIONS; CONSERVATION-LAWS; EFFICIENT IMPLEMENTATION; MAXIMUM-PRINCIPLE; SYSTEMS;
D O I
10.1007/s00211-011-0443-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211-219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119-131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918-8934, 2010) and Zhang et al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.
引用
收藏
页码:545 / 563
页数:19
相关论文
共 16 条
[1]   THE THEORETICAL ACCURACY OF RUNGE-KUTTA TIME DISCRETIZATIONS FOR THE INITIAL-BOUNDARY VALUE-PROBLEM - STUDY OF THE BOUNDARY ERROR [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S ;
DON, WS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) :1241-1252
[2]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113
[3]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[4]   High Order Strong Stability Preserving Time Discretizations [J].
Gottlieb, Sigal ;
Ketcheson, David I. ;
Shu, Chi-Wang .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (03) :251-289
[5]   ON THE SYMMETRIC FORM OF SYSTEMS OF CONSERVATION-LAWS WITH ENTROPY [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (01) :151-164
[6]   MAXIMUM PRINCIPLE ON THE ENTROPY AND 2ND-ORDER KINETIC SCHEMES [J].
KHOBALATTE, B ;
PERTHAME, B .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :119-131
[7]   On positivity preserving finite volume schemes for Euler equations [J].
Perthame, B ;
Shu, CW .
NUMERISCHE MATHEMATIK, 1996, 73 (01) :119-130
[8]   TOTAL-VARIATION-DIMINISHING TIME DISCRETIZATIONS [J].
SHU, CW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (06) :1073-1084
[9]   EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES [J].
SHU, CW ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (02) :439-471
[10]   EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES .2. [J].
SHU, CW ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (01) :32-78