Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review

被引:99
|
作者
Manoharan, Aaruththiran [1 ]
Begam, K. M. [1 ]
Aparow, Vimal Rau [1 ]
Sooriamoorthy, Denesh [2 ]
机构
[1] Univ Nottingham Malaysia Campus, Dept Elect & Elect Engn, Semenyih, Malaysia
[2] Taylors Univ, Sch Engn, Subang Jaya, Malaysia
关键词
Artificial intelligence; State of charge; State of health; Li-ion batteries; Electric vehicles; LITHIUM-ION BATTERY; OF-CHARGE ESTIMATION; SHORT-TERM-MEMORY; GATED RECURRENT UNIT; OPEN-CIRCUIT VOLTAGE; HEALTH ESTIMATION; ONLINE STATE; FAULT-DIAGNOSIS; LIFE ESTIMATION; SOH ESTIMATION;
D O I
10.1016/j.est.2022.105384
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, Artificial Intelligence has been widely used for determining the current state of Li-ion batteries used for Electric Vehicle applications. It is crucial to have an accurate battery state estimation to prevent over-charging/over-discharging of Li-ion batteries, which would contribute to increased lifetime, thus reducing the running costs of Electric Vehicles. This review paper focuses on some of the commonly proposed Artificial In-telligence data-driven based State of Charge and State of Health estimation that has not been covered in much detail previously. The recent works indexed under Web of Science that used Support Vector Machines, Gradient Boosting and Artificial Neural Networks (with a deep insight on the use of recurrent architectures) for battery state estimation are reviewed. A handful of recent works that implemented their proposed battery state esti-mation algorithm on a hardware prototype is also discussed, along with the current challenges faced in imple-mentation. Since various input features have been suggested for State of Charge and State of Health estimation in the recent literature, a detailed analysis is presented in this paper. Key observations with research gaps are made from the reviewed literature, with identification of major challenges. Future research paths are deduced, with the goal of increasing the feasibility of implementing Artificial Intelligence-based battery state estimation in Electric Vehicles.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Estimation of state of charge of a battery pack in variable power cases with artificial neural networks
    Chen, Yong
    Li, Guiyuan
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2442 - 2445
  • [32] Text classification: neural networks vs support vector machines
    Zaghloul, Waleed
    Lee, Sang M.
    Trimi, Silvana
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2009, 109 (5-6) : 708 - 717
  • [33] Artificial Intelligence in Electric Vehicle Battery Disassembly: A Systematic Review
    Ai, Zekai
    Nee, A. Y. C.
    Ong, S. K.
    AUTOMATION, 2024, 5 (04): : 484 - 507
  • [34] Battery Management System for SOC Estimation of Lithium-Ion Battery in Electric Vehicle: A Review
    Shete, Suwarna
    Jog, Pranjal
    Kumawat, R. K.
    Palwalia, D. K.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [35] ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE
    QIANG Jiaxi AO Guoqiang YANG Lin School of Mechanical Engineering
    Chinese Journal of Mechanical Engineering, 2008, (03) : 20 - 25
  • [36] Research on State of Charge Estimation for Power Battery of Electric Vehicle
    Zong, Changfu
    Xiang, Haiou
    He, Lei
    Chen, Dongxue
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 799 - 803
  • [37] ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE
    Qiang Jiaxi
    Ao Guoqiang
    Yang Lin
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2008, 21 (03) : 20 - 25
  • [38] Estimation of battery state-of-charge using ν-support vector regression algorithm
    Q. -S. Shi
    C. -H. Zhang
    N. -X. Cui
    International Journal of Automotive Technology, 2008, 9 : 759 - 764
  • [39] Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
    Zhang, Shuzhi
    Zhai, Baoyu
    Guo, Xu
    Wang, Kaike
    Peng, Nian
    Zhang, Xiongwen
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [40] State of Energy Estimation for Lithium-Ion Battery Pack via Prediction in Electric Vehicle Applications
    An, Fulai
    Jiang, Jiuchun
    Zhang, Weige
    Zhang, Caiping
    Fan, Xinyuan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (01) : 184 - 195