Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review

被引:99
|
作者
Manoharan, Aaruththiran [1 ]
Begam, K. M. [1 ]
Aparow, Vimal Rau [1 ]
Sooriamoorthy, Denesh [2 ]
机构
[1] Univ Nottingham Malaysia Campus, Dept Elect & Elect Engn, Semenyih, Malaysia
[2] Taylors Univ, Sch Engn, Subang Jaya, Malaysia
关键词
Artificial intelligence; State of charge; State of health; Li-ion batteries; Electric vehicles; LITHIUM-ION BATTERY; OF-CHARGE ESTIMATION; SHORT-TERM-MEMORY; GATED RECURRENT UNIT; OPEN-CIRCUIT VOLTAGE; HEALTH ESTIMATION; ONLINE STATE; FAULT-DIAGNOSIS; LIFE ESTIMATION; SOH ESTIMATION;
D O I
10.1016/j.est.2022.105384
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, Artificial Intelligence has been widely used for determining the current state of Li-ion batteries used for Electric Vehicle applications. It is crucial to have an accurate battery state estimation to prevent over-charging/over-discharging of Li-ion batteries, which would contribute to increased lifetime, thus reducing the running costs of Electric Vehicles. This review paper focuses on some of the commonly proposed Artificial In-telligence data-driven based State of Charge and State of Health estimation that has not been covered in much detail previously. The recent works indexed under Web of Science that used Support Vector Machines, Gradient Boosting and Artificial Neural Networks (with a deep insight on the use of recurrent architectures) for battery state estimation are reviewed. A handful of recent works that implemented their proposed battery state esti-mation algorithm on a hardware prototype is also discussed, along with the current challenges faced in imple-mentation. Since various input features have been suggested for State of Charge and State of Health estimation in the recent literature, a detailed analysis is presented in this paper. Key observations with research gaps are made from the reviewed literature, with identification of major challenges. Future research paths are deduced, with the goal of increasing the feasibility of implementing Artificial Intelligence-based battery state estimation in Electric Vehicles.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Parallel Recurrent Artificial Neural Networks for Electric Vehicle Battery State of Health Estimation
    Manoharan, Aaruththiran
    Begum, K. M.
    Aparow, Vimal Rau
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 590 - 595
  • [2] Electric vehicle battery pack state of charge estimation using parallel artificial neural networks
    Manoharan, Aaruththiran
    Sooriamoorthy, Denesh
    Begam, K. M.
    Aparow, Vimal Rau
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [3] State of charge estimation of an electric vehicle's battery using Deep Neural Networks: Simulation and experimental results
    El Fallah, Saad
    Kharbach, Jaouad
    Hammouch, Zakia
    Rezzouk, Abdellah
    Jamil, Mohammed Ouazzani
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [4] A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks
    Bonfitto, Angelo
    ENERGIES, 2020, 13 (10)
  • [5] Battery State of Charge Probabilistic Estimation Using Natural Gradient Boosting
    Li, Guanzheng
    Li, Bin
    Li, Chao
    Zeng, Kaidi
    Wang, Shuai
    Chen, Peiyu
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (09) : 10636 - 10646
  • [6] Review on the State of Charge Estimation Methods for Electric Vehicle Battery
    Zhang, Mingyue
    Fan, Xiaobin
    WORLD ELECTRIC VEHICLE JOURNAL, 2020, 11 (01):
  • [7] State of charge (SOC) estimation in electric vehicle (EV) battery management systems using ensemble methods and neural networks
    Ofoegbu, Edward Ositadinma
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [8] Advanced State of Charge Estimation for Electric Vehicle Batteries Using Gradient Boosting and Random Forest Models
    El Haissen, Mouhsine
    Kharbach, Jaouad
    El Fallah, Saad
    Lehmam, Oumayma
    Masrour, Rachid
    Rezzouk, Abdellah
    Jamil, Mohammed Ouazzani
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 2, 2024, 1099 : 422 - 430
  • [9] Evaluation of battery modules state for electric vehicle using artificial neural network and experimental validation
    Liang, Xinyu
    Bao, Nengsheng
    Zhang, Jian
    Garg, Akhil
    Wang, Shuangxi
    ENERGY SCIENCE & ENGINEERING, 2018, 6 (05): : 397 - 407
  • [10] State-of-Charge Estimation of Li-ion Battery Cell using Support Vector Regression and Gradient Boosting Techniques
    Ipek, Eymen
    Eren, M. Kerem
    Yilmaz, Murat
    2019 INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP) & 2019 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2019, : 604 - 609