High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect

被引:68
作者
De Toro, Jose A. [1 ,2 ]
Marques, Daniel P. [1 ,2 ]
Muniz, Pablo [1 ,2 ]
Skumryev, Vassil [3 ,4 ]
Sort, Jordi [3 ,4 ]
Givord, Dominique [5 ,6 ]
Nogues, Josep [4 ,7 ]
机构
[1] Univ Castilla La Mancha, IRICA, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, Dept Fis Aplicada, E-13071 Ciudad Real, Spain
[3] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain
[4] ICREA, Barcelona, Spain
[5] Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
[6] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[7] ICN2, E-08193 Barcelona, Spain
关键词
EXCHANGE-BIAS; FERROMAGNETIC NANOPARTICLES; FE NANOPARTICLES; CO NANOPARTICLES; ANISOTROPY; SUPERPARAMAGNETISM; SUPERLATTICES; FILMS;
D O I
10.1103/PhysRevLett.115.057201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal activation tends to destroy the magnetic stability of small magnetic nanoparticles, with crucial implications for ultrahigh density recording among other applications. Here we demonstrate that low-blocking-temperature ferromagnetic (FM) Co nanoparticles (T-B < 70 K) become magnetically stable above 400 K when embedded in a high-Neel-temperature antiferromagnetic (AFM) NiO matrix. The origin of this remarkable T-B enhancement is due to a magnetic proximity effect between a thin CoO shell (with low Neel temperature, T-N, and high anisotropy, K-AFM) surrounding the Co nanoparticles and the NiO matrix (with high T-N but low K-AFM). This proximity effect yields an effective antiferromagnet with an apparent T-N beyond that of bulk CoO, and an enhanced anisotropy compared to NiO. In turn, the Co core FM moment is stabilized against thermal fluctuations via core-shell exchange-bias coupling, leading to the observed T-B increase. Mean-field calculations provide a semiquantitative understanding of this magnetic-proximity stabilization mechanism.
引用
收藏
页数:6
相关论文
共 62 条
[1]   Thermodynamic measurements of magnetic ordering in antiferromagnetic superlattices [J].
Abarra, EN ;
Takano, K ;
Hellman, F ;
Berkowitz, AE .
PHYSICAL REVIEW LETTERS, 1996, 77 (16) :3451-3454
[2]   Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties [J].
Akmaldinov, K. ;
Ducruet, C. ;
Portemont, C. ;
Joumard, I. ;
Prejbeanu, I. L. ;
Dieny, B. ;
Baltz, V. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
[3]   Synthesis and magnetic properties of ferrimagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix [J].
Artus, Mathieu ;
Ammar, Souad ;
Sicard, Lorette ;
Piquemal, Jean-Yves ;
Herbst, Frederic ;
Vaulay, Marie-Joseph ;
Fievet, Fernand ;
Richard, Vincent .
CHEMISTRY OF MATERIALS, 2008, 20 (15) :4861-4872
[4]   Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions [J].
Banerjee, N. ;
Robinson, J. W. A. ;
Blamire, M. G. .
NATURE COMMUNICATIONS, 2014, 5
[5]   SPATIALLY MODULATED ANTIFERROMAGNETIC ORDER IN COO/NIO SUPERLATTICES [J].
BORCHERS, JA ;
CAREY, MJ ;
ERWIN, RW ;
MAJKRZAK, CF ;
BERKOWITZ, AE .
PHYSICAL REVIEW LETTERS, 1993, 70 (12) :1878-1881
[6]   STRONG INTERLAYER COUPLING IN COO/NIO ANTIFERROMAGNETIC SUPERLATTICES [J].
CAREY, MJ ;
BERKOWITZ, AE ;
BORCHERS, JA ;
ERWIN, RW .
PHYSICAL REVIEW B, 1993, 47 (15) :9952-9955
[7]   COO-NIO SUPERLATTICES - INTERLAYER INTERACTIONS AND EXCHANGE-ANISOTROPY WITH NI81FE19 [J].
CAREY, MJ ;
BERKOWITZ, AE .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) :6892-6897
[8]   Energy barrier enhancement by weak magnetic interactions in Co/Nb granular films assembled by inert gas condensation [J].
De Toro, J. A. ;
Gonzalez, J. A. ;
Normile, P. S. ;
Muniz, P. ;
Andres, J. P. ;
Lopez Anton, R. ;
Canales-Vazquez, J. ;
Riveiro, J. M. .
PHYSICAL REVIEW B, 2012, 85 (05)
[9]   Direct observation of rotatable uncompensated spins in the exchange bias system Co/CoO-MgO [J].
Ge, Chuannan ;
Wan, Xiangang ;
Pellegrin, Eric ;
Hu, Zhiwei ;
Valvidares, S. Manuel ;
Barla, Alessandro ;
Liang, Wen-I. ;
Chu, Ying-Hao ;
Zou, Wenqin ;
Du, Youwei .
NANOSCALE, 2013, 5 (21) :10236-10241
[10]  
Gökemeijer NJ, 1999, J APPL PHYS, V85, P5516, DOI 10.1063/1.369879