Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w)

被引:28
作者
Beznosova, Oleksandra V. [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
dyadic paraproduct; weighted Lebesgue space; Bellman functions;
D O I
10.1016/j.jfa.2008.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dyadic paraproduct is bounded in weighted Lebesgue spaces L-p(w) if and only if the weight w belongs to the Muckenhoupt class A(p)(d). However, the sharp bounds on the norm of the dyadic paraproduct are not known even in the simplest L-2(w) case. In this paper we prove that the bound on the norm of the dyadic paraproduct in the weighted Lebesgue space L-2(w) depends linearly on the Ad characteristic of the 2 weight w using Bellman function techniques and extrapolate this result to the L-p(w) case. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:994 / 1007
页数:14
相关论文
共 8 条
[1]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[2]  
Coifman R.R., 1989, J. Am. Math. Soc., V2, P553
[3]   Extrapolation and sharp norm estimates for classical operators on weighted lebesgue spaces [J].
Dragicevic, O ;
Grafakos, L ;
Pereyra, C ;
Petermichl, S .
PUBLICACIONS MATEMATIQUES, 2005, 49 (01) :73-91
[4]  
JOURNE JL, 1984, ANN MATH, V20, P371
[5]  
Katz NH, 1999, APPL NUM HARM ANAL, P145
[6]   The bellman functions and two-weight inequalities for Haar multipliers [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :909-928
[7]   The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic [J].
Petermichl, S. .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (05) :1355-1375
[8]  
Wittwer J, 2000, MATH RES LETT, V7, P1