Analytical solution of the damped Helmholtz-Duffing equation

被引:31
作者
Elias-Zuniga, Alex [1 ]
机构
[1] Tecnol Monterrey, Monterrey 64849, NL, Mexico
关键词
Mixed-parity nonlinear oscillator; Quadratic nonlinearities; Damped Helmholtz-Duffing oscillator; Asymmetric behavior; OSCILLATOR; INTEGRABILITY;
D O I
10.1016/j.aml.2012.06.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a class of analytical solution of the damped Helmholtz-Duffing oscillator that is based on a recently developed exact solution for the undamped case. Our solution procedure indicates that this solution holds for specific system parametric choice values. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2349 / 2353
页数:5
相关论文
共 9 条
[1]   Integrability and symmetries for the Helmholtz oscillator with friction [J].
Almendral, JA ;
Sanjuán, MAF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (03) :695-710
[2]   Passive elasto-magnetic suspensions: nonlinear models and experimental outcomes [J].
Bonisoli, E. ;
Vigliani, A. .
MECHANICS RESEARCH COMMUNICATIONS, 2007, 34 (04) :385-394
[3]   New aspects of integrability of force-free Duffing-van der Pol oscillator and related nonlinear systems [J].
Chandrasekar, VK ;
Senthilvelan, M ;
Lakshmanan, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (16) :4527-4534
[4]   Several numerical solution techniques for nonlinear eardrum-type oscillations [J].
Chen, Y. Z. ;
Lin, X. Y. .
JOURNAL OF SOUND AND VIBRATION, 2006, 296 (4-5) :1059-1067
[5]   Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method [J].
Compean, F. I. ;
Olvera, D. ;
Campa, F. J. ;
Lopez de Lacalle, L. N. ;
Elias-Zuniga, A. ;
Rodriguez, C. A. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2012, 57 :27-33
[6]   Exact solution of the quadratic mixed-parity Helmholtz-Duffing oscillator [J].
Elias-Zuniga, Alex .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) :7590-7594
[7]   Monotonous property of non-oscillations of the damped Duffing's equation [J].
Feng, ZS .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :463-471
[8]   Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method .1. The fundamental mode of isotropic plates [J].
Han, W ;
Petyt, M .
COMPUTERS & STRUCTURES, 1997, 63 (02) :295-308
[9]   Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams [J].
Lai, S. K. ;
Harrington, J. ;
Xiang, Y. ;
Chow, K. W. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (05) :473-480