Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS

被引:36
作者
Angel de Miguel, Miguel [1 ]
Garcia, Fernando [1 ]
Maria Armingol, Jose [1 ]
机构
[1] Univ Carlos III Madrid, Intelligent Syst Lab, Av Univ 30, Madrid 28911, Spain
关键词
localization; LiDAR; GNSS; Global Positioning System (GPS); monte carlo; particle filter; autonomous driving;
D O I
10.3390/s20113145
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes a method that improves autonomous vehicles localization using a modification of probabilistic laser localization like Monte Carlo Localization (MCL) algorithm, enhancing the weights of the particles by adding Kalman filtered Global Navigation Satellite System (GNSS) information. GNSS data are used to improve localization accuracy in places with fewer map features and to prevent the kidnapped robot problems. Besides, laser information improves accuracy in places where the map has more features and GNSS higher covariance, allowing the approach to be used in specifically difficult scenarios for GNSS such as urban canyons. The algorithm is tested using KITTI odometry dataset proving that it improves localization compared with classic GNSS + Inertial Navigation System (INS) fusion and Adaptive Monte Carlo Localization (AMCL), it is also tested in the autonomous vehicle platform of the Intelligent Systems Lab (LSI), of the University Carlos III de of Madrid, providing qualitative results.
引用
收藏
页数:13
相关论文
共 30 条
[1]   A Particle Filter Localization Method Using 2D Laser Sensor Measurements and Road Features for Autonomous Vehicle [J].
Ahn, KyungJae ;
Kang, Yeonsik .
JOURNAL OF ADVANCED TRANSPORTATION, 2019,
[2]  
[Anonymous], 2009, ICRA WORKSH OP SOURC
[3]  
Balasuriya BLEA, 2016, 2ND INTERNATIONAL MERCON 2016 MORATUWA ENGINEERING RESEARCH CONFERENCE, P403, DOI 10.1109/MERCon.2016.7480175
[4]   Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving [J].
Bresson, Guillaume ;
Alsayed, Zayed ;
Yu, Li ;
Glaser, Sebastien .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2017, 2 (03) :194-220
[5]  
Burgard Wolfram., Introduction to mobile robotics
[6]   Context-Aided Sensor Fusion for Enhanced Urban Navigation [J].
David Marti, Enrique ;
Martin, David ;
Garcia, Jesus ;
de la Escalera, Arturo ;
Manuel Molina, Jose ;
Maria Armingol, Jose .
SENSORS, 2012, 12 (12) :16802-16837
[7]  
De Miguel M, 2019, COMPUTER AIDED SYSTE, P145
[8]  
Fentaw HW, 2017, INT CONF UBIQ FUTUR, P33
[9]  
Fox D., 1999, P 16 NAT C ART INT A, V1999, P1
[10]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237