Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit

被引:127
作者
Lei, Z [1 ]
Zhou, Y
机构
[1] Fudan Univ, Sch Math, Shanghai 200433, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
incompressible limit; global existence; Oldroyd model;
D O I
10.1137/040618813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the Oldroyd model describing fluids with viscoelastic properties. Global classical solutions for the two-dimensional incompressible Oldroyd model with small initial displacements are shown to exist via the incompressible limit. The main difficulty is the lack of the damping mechanism on the deformation tensor.
引用
收藏
页码:797 / 814
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 2004, COMMUNICATIONS PURE
[2]  
[Anonymous], 1995, BLOWUP NONLINEAR HYP
[3]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[4]   GLOBAL-SOLUTIONS OF THE EQUATIONS OF ELASTODYNAMICS OF INCOMPRESSIBLE NEO-HOOKEAN MATERIALS [J].
EBIN, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :3802-3805
[5]  
Ebin DG., 1996, Electron. Res. Announc. Am. Math. Soc, V2, P50, DOI DOI 10.1090/S1079-6762-96-00006-6
[6]   Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities [J].
Hron, J ;
Málek, J ;
Necas, J ;
Rajagopal, KR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) :297-315
[7]  
JOSEPH DD, 1980, ARCH RATIONAL MECH A, V75, P251
[8]   GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SMALL SOLUTIONS TO NONLINEAR VISCOELASTICITY [J].
KAWASHIMA, S ;
SHIBATA, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (01) :189-208
[9]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[10]  
Klainerman S, 1996, COMMUN PUR APPL MATH, V49, P307, DOI 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO