Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough

被引:71
作者
Owusu-Kwarteng, James [1 ]
Tano-Debrah, Kwaku [2 ]
Akabanda, Fortune [1 ]
Jespersen, Lene [3 ]
机构
[1] Univ Dev Studies, Fac Sci Appl, Dept Appl Biol, Navrongo, Ghana
[2] Univ Ghana, Dept Nutr & Food Sci, Legon, Ghana
[3] Univ Copenhagen, Dept Food Sci, DK-1958 Frederiksberg C, Denmark
来源
BMC MICROBIOLOGY | 2015年 / 15卷
关键词
Starter culture; Lactobacillus fermentum; Cereal; Traditional fermentation; Probiotics traits; LACTIC-ACID BACTERIA; DAIRY-PRODUCTS; FOOD-PRODUCTS; MAIZE DOUGHS; SUSCEPTIBILITY; BIODIVERSITY; SELECTION; BILE; COLONIZATION; AGGREGATION;
D O I
10.1186/s12866-015-0602-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Throughout Africa, food fermentations are still driven by indigenous microorganisms which influence the nutritional, organoleptic and safety of the final products. However, for improved safety, consistent quality and beneficial health effects, a trend has emerged which involves the isolation of indigenous strains from traditional fermented products to be used as functional starter cultures. These functional starter cultures possess inherent functional characteristics and can contribute to food quality and safety by offering one or more organoleptic, nutritional, technological or health advantage (probiotics). With the aim of selecting potential probiotic starter cultures, Lactobacillus fermentum strains isolated from fermented millet dough were investigated for technological properties and probiotic traits in-vitro. Results: A total of 176 L. fermentum strains were assessed for technological properties including rate of acidification, exopolysaccharide production and amylase activity. Following this, 48 strains showing desirable technological properties were first screened for acid resistance. Sixteen acid resistant strains were assessed for additional probiotic properties including resistance to bile salts, bile salt hydrolysis, antimicrobial property, haemolysis and antibiotics resistance. L. fermentum strains clustered into 3 groups represented by 36 %, 47 % and 17 % as fast, medium and slow acidifiers respectively. About 8 %, 78 % and 14 % of the strains showed strong, weak and no exopolysaccharides production respectively. Amylase activity was generally weak or not detected. After exposure of 48 L. fermentum strains to pH 2.5 for 4 h, 16 strains were considered to be acid resistant. All 16 strains were resistant to bile salt. Four strains demonstrated bile salt hydrolysis. Antimicrobial activity was observed towards Listeria monocytogenes and Staphylococcus aureus but not E. coli and Salmonella enteritidis. Lactobacillus fermentum strains were generally susceptible to antibiotics except 6 strains which showed resistance towards streptomycin, gentamicin and kanamycin. Conclusion: In vitro determination of technological and probiotic properties have shown strain specific difference among L. fermentum strains isolated from fermented millet dough. Sixteen (16) L. fermentum strains have been shown to possess desirable technological and probiotic characteristics in vitro. These strains are therefore good candidates for further studies to elucidate their full potential and possible application as novel probiotic starter cultures.
引用
收藏
页数:10
相关论文
共 62 条
[1]   Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products [J].
Adimpong, David B. ;
Nielsen, Dennis S. ;
Sorensen, Kim I. ;
Derkx, Patrick M. F. ;
Jespersen, Lene .
BMC MICROBIOLOGY, 2012, 12
[2]   Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin [J].
Agati, V ;
Guyot, JP ;
Morlon-Guyot, J ;
Talamond, P ;
Hounhouigan, DJ .
JOURNAL OF APPLIED MICROBIOLOGY, 1998, 85 (03) :512-520
[3]   Influence of starter culture combinations of Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei on aroma in Ghanaian maize dough fermentation [J].
Annan, NT ;
Poll, L ;
Sefa-Dedeh, S ;
Plahar, WA ;
Jakobsen, M .
EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2003, 216 (05) :377-384
[4]   Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests [J].
Argyri, Anthoula A. ;
Zoumpopoulou, Georgia ;
Karatzas, Kimon-Andreas G. ;
Tsakalidou, Effie ;
Nychas, George-John E. ;
Panagou, Efstathios Z. ;
Tassou, Chrysoula C. .
FOOD MICROBIOLOGY, 2013, 33 (02) :282-291
[5]   Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products [J].
Bao, Yan ;
Zhang, Yanchao ;
Zhang, Yong ;
Liu, Yong ;
Wang, Shiquan ;
Dong, Ximei ;
Wang, Yanyan ;
Zhang, Heping .
FOOD CONTROL, 2010, 21 (05) :695-701
[6]   Bile salt hydrolase activity in probiotics [J].
Begley, M ;
Hill, C ;
Gahan, CGM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (03) :1729-1738
[7]   The interaction between bacteria and bile [J].
Begley, M ;
Gahan, CGM ;
Hill, C .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (04) :625-651
[8]   Technical guidance Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance Prepared by the Panel on Additives and Products or Substances used in Animal Feed [J].
Bories, Georges ;
Brantom, Paul ;
de Barbera, Joaquim Brufau ;
Chesson, Andrew ;
Cocconcelli, Pier Sandro ;
Debski, Bogdan ;
Dierick, Noel ;
Franklin, Anders ;
Gropp, Juergen ;
Halle, Ingrid ;
Hogstrand, Christer ;
de Knecht, Joop ;
Leng, Lubomir ;
Haldorsen, Anne-Katrine Lundebye ;
Mantovani, Alberto ;
Mezes, Miklos ;
Nebbia, Carlo ;
Rambeck, Walter ;
Rychen, Guido ;
von Wright, Atte ;
Wester, Pieter .
EFSA JOURNAL, 2008, 6 (07)
[9]   Probiotic features of Lactobacillus plantarum mutant strains [J].
Bove, Pasquale ;
Gallone, Anna ;
Russo, Pasquale ;
Capozzi, Vittorio ;
Albenzio, Marzia ;
Spano, Giuseppe ;
Fiocco, Daniela .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 96 (02) :431-441
[10]   Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli [J].
Charteris, WP ;
Kelly, PM ;
Morelli, L ;
Collins, JK .
JOURNAL OF FOOD PROTECTION, 2001, 64 (12) :2007-2014