Computational nanomedicine: modeling of nanoparticle-mediated hyperthermal cancer therapy

被引:0
作者
Kaddi, Chanchala D. [1 ]
Phan, John H. [1 ]
Wang, May D. [2 ,3 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Biomed Engn Dept, Winship Canc Inst, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
bioinformatics; drug delivery; hyperthermia; mathematical modeling; nanomedicine; nanoparticle; pharmacokinetics; simulation; MAGNETIC NANOPARTICLES; PROSTATE-CANCER; GOLD-NANOPARTICLE; DRUG-DELIVERY; TUMOR; THERMOTHERAPY; FEASIBILITY; CHALLENGES; DYNAMICS; KINETICS;
D O I
10.2217/NNM.13.117
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nanoparticle-mediated hyperthermia for cancer therapy is a growing area of cancer nanomedicine because of the potential for localized and targeted destruction of cancer cells. Localized hyperthermal effects are dependent on many factors, including nanoparticle size and shape, excitation wavelength and power, and tissue properties. Computational modeling is an important tool for investigating and optimizing these parameters. In this review, we focus on computational modeling of magnetic and gold nanoparticle-mediated hyperthermia, followed by a discussion of new opportunities and challenges.
引用
收藏
页码:1323 / 1333
页数:11
相关论文
共 50 条
[41]   Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery [J].
Ying Li ;
Wylie Stroberg ;
Tae-Rin Lee ;
Han Sung Kim ;
Han Man ;
Dean Ho ;
Paolo Decuzzi ;
Wing Kam Liu .
Computational Mechanics, 2014, 53 :511-537
[42]   Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery [J].
Li, Ying ;
Stroberg, Wylie ;
Lee, Tae-Rin ;
Kim, Han Sung ;
Man, Han ;
Ho, Dean ;
Decuzzi, Paolo ;
Liu, Wing Kam .
COMPUTATIONAL MECHANICS, 2014, 53 (03) :511-537
[43]   Nanoparticle-Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment [J].
Salvioni, Lucia ;
Zuppone, Stefania ;
Andreata, Francesco ;
Monieri, Matteo ;
Mazzucchelli, Serena ;
Di Carlo, Caterina ;
Morelli, Lucia ;
Cordiglieri, Chiara ;
Donnici, Lorena ;
De Francesco, Raffaele ;
Corsi, Fabio ;
Prosperi, Davide ;
Vago, Riccardo ;
Colombo, Miriam .
ADVANCED THERAPEUTICS, 2020, 3 (08)
[44]   Redox-Responsive Nanoparticle-Mediated Systemic RNAi for Effective Cancer Therapy [J].
Xu, Xiaoding ;
Wu, Jun ;
Liu, Shuaishuai ;
Saw, Phei Er ;
Tao, Wei ;
Li, Yujing ;
Krygsman, Lisa ;
Yegnasubramanian, Srinivasan ;
De Marzo, Angelo M. ;
Shi, Jinjun ;
Bieberich, Charles J. ;
Farokhzad, Omid C. .
SMALL, 2018, 14 (41)
[45]   Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment [J].
Rani, Ruma ;
Malik, Parth ;
Dhania, Sunena ;
Mukherjee, Tapan Kumar .
PHARMACEUTICS, 2023, 15 (01)
[46]   A Hydrophobic Starch Polymer for Nanoparticle-Mediated Delivery of Docetaxel [J].
Dandekar, Prajakta ;
Jain, Ratnesh ;
Stauner, Thomas ;
Loretz, Brigitta ;
Koch, Marcus ;
Wenz, Gerhard ;
Lehr, Claus-Michael .
MACROMOLECULAR BIOSCIENCE, 2012, 12 (02) :184-194
[47]   Nanoparticle-mediated universal CAR-T therapy [J].
Fan, Mingliang ;
Zheng, Jiayu ;
Huang, Yue ;
Lu, Mingxia ;
Shang, Zhi ;
Du, Mingwei .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 666
[48]   Mitochondria-Targeted Nanomedicine for Enhanced Efficacy of Cancer Therapy [J].
Gao, Yan ;
Tong, Haibei ;
Li, Jialiang ;
Li, Jiachen ;
Huang, Di ;
Shi, Jisen ;
Xia, Bing .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
[49]   Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability [J].
Bravo, M. ;
Fortuni, B. ;
Mulvaney, P. ;
Hofkens, J. ;
Uji-i, H. ;
Rocha, S. ;
Hutchison, J. A. .
JOURNAL OF CONTROLLED RELEASE, 2024, 372 :751-777
[50]   Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities [J].
Li, Yunfei ;
Humphries, Brock ;
Yang, Chengfeng ;
Wang, Zhishan .
NANOMATERIALS, 2018, 8 (06)