The Skin You Are In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants

被引:51
作者
Blakney, Anna K. [1 ]
McKay, Paul F. [1 ]
Yus, Barbara Ibarzo [1 ]
Hunter, Judith E. [2 ]
Dex, Elizabeth A. [2 ]
Shattock, Robin J. [1 ]
机构
[1] Imperial Coll London, Dept Med, London W2 1PG, England
[2] Imperial NHS Trust, Dept Plast Surg, London W6 8RF, England
基金
“创新英国”项目; 英国工程与自然科学研究理事会;
关键词
lipid nanoparticle; RNA; design of experiments; human skin; self-amplifying; nucleic acid; ex vivo; MESSENGER-RNA; IN-VIVO; TRANSFECTION EFFICIENCY; NONVIRAL DELIVERY; INFLUENZA; IMMUNITY; RECEPTORS; VACCINES; VIRUSES; VECTOR;
D O I
10.1021/acsnano.9b01774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Messenger RNA (mRNA) is a promising tool for biotherapeutics, and self-amplifying mRNA (saRNA) is particularly advantageous, because it results in abundant protein expression and production is easily scalable. While mRNA therapeutics have been shown to be highly effective in small animals, the outcomes do not scale linearly when these formulations are translated to dose-escalation studies in humans. Here, we utilize a design of experiments (DoE) approach to optimize the formulation of saRNA lipid nanoparticles in human skin explants. We first observed that luciferase expression from saRNA peaked after 11 days in human skin. Using DoE inputs of complexing lipid identity, lipid nanoparticle dose, lipid concentration, particle concentration, and ratio of zwitterionic to cationic lipids, we optimized the saRNA-induced luciferase expression in skin explants. Lipid identity and lipid concentration were found to be significant parameters in the DoE model, and the optimized formulation resulted in similar to 7-fold increase in luciferase expression, relative to initial 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) formulation. Using flow cytometry, we observed that optimized formulations delivered the saRNA to similar to 2% of the resident cells in the human skin explants. Although immune cells comprise only 7% of the total population of cells in skin, immune cells were found to express similar to 50% of the RNA. This study demonstrates the powerful combination of using a DoE approach paired with clinically relevant human skin explants to optimize nucleic acid formulations. We expect that this system will be useful for optimizing both formulation and molecular designs of clinically translational nucleic acid vaccines and therapeutics.
引用
收藏
页码:5920 / 5930
页数:11
相关论文
共 37 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]   Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses [J].
Bahl, Kapil ;
Senn, Joe J. ;
Yuzhakov, Olga ;
Bulychev, Alex ;
Brito, Luis A. ;
Hassett, Kimberly J. ;
Laska, Michael E. ;
Smith, Mike ;
Almarsson, Orn ;
Thompson, James ;
Ribeiro, Amilcar ;
Watson, Mike ;
Zaks, Tal ;
Ciaramella, Giuseppe .
MOLECULAR THERAPY, 2017, 25 (06) :1316-1327
[3]   Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA [J].
Ball, Rebecca L. ;
Hajj, Khalid A. ;
Vizelman, Jamie ;
Bajaj, Palak ;
Whitehead, Kathryn A. .
NANO LETTERS, 2018, 18 (06) :3814-3822
[4]   Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion [J].
Bogers, Willy M. ;
Oostermeijer, Herman ;
Mooij, Petra ;
Koopman, Gerrit ;
Verschoor, Ernst J. ;
Davis, David ;
Ulmer, Jeffrey B. ;
Brito, Luis A. ;
Cu, Yen ;
Banerjee, Kaustuv ;
Otten, Gillis R. ;
Burke, Brian ;
Dey, Antu ;
Heeney, Jonathan L. ;
Shen, Xiaoying ;
Tomaras, Georgia D. ;
Labranche, Celia ;
Montefiori, David C. ;
Liao, Hua-Xin ;
Haynes, Barton ;
Geall, Andrew J. ;
Barnett, Susan W. .
JOURNAL OF INFECTIOUS DISEASES, 2015, 211 (06) :947-955
[5]   Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin [J].
Brazzoli, Michela ;
Magini, Diletta ;
Bonci, Alessandra ;
Buccato, Scilla ;
Giovani, Cinzia ;
Kratzer, Roland ;
Zurli, Vanessa ;
Mangiavacchi, Simona ;
Casini, Daniele ;
Brito, Luis M. ;
De Gregorio, Ennio ;
Mason, Peter W. ;
Ulmer, Jeffrey B. ;
Geall, Andrew J. ;
Bertholet, Sylvie .
JOURNAL OF VIROLOGY, 2016, 90 (01) :332-344
[6]   Study of the Fusion Mechanism of Fusogenic Cationic Liposomes with Anionic Model Membranes [J].
Cavalcanti, Rafaela R. M. ;
Lira, Rafael B. ;
Riske, Karin A. .
BIOPHYSICAL JOURNAL, 2018, 114 (03) :606A-606A
[7]   Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose [J].
Chahal, Jasdave S. ;
Khan, Omar F. ;
Cooper, Christopher L. ;
McPartlan, Justine S. ;
Tsosie, Jonathan K. ;
Tilley, Lucas D. ;
Sidik, Saima M. ;
Lourido, Sebastian ;
Langer, Robert ;
Bavari, Sina ;
Ploegh, Hidde L. ;
Anderson, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (29) :E4133-E4142
[8]   Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines [J].
De Serrano, Luis O. ;
Burkhart, David J. .
JOURNAL OF NANOBIOTECHNOLOGY, 2017, 15
[9]   Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines [J].
Demoulins, Thomas ;
Milona, Panagiota ;
Englezou, Pavlos C. ;
Ebensen, Thomas ;
Schulze, Kai ;
Suter, Rolf ;
Pichon, Chantal ;
Midoux, Patrick ;
Guzman, Carlos A. ;
Ruggli, Nicolas ;
McCullough, Kenneth C. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (03) :711-722
[10]   mRNA-based vaccines synergize with radiation therapy to eradicate established tumors [J].
Fotin-Mleczek, Mariola ;
Zanzinger, Kai ;
Heidenreich, Regina ;
Lorenz, Christina ;
Kowalczyk, Aleksandra ;
Kallen, Karl-Josef ;
Huber, Stephan M. .
RADIATION ONCOLOGY, 2014, 9 :1-13