Efficient stochastic FEM for flow in heterogeneous porous media. Part 1: random Gaussian conductivity coefficients

被引:4
|
作者
Traverso, L. [1 ]
Phillips, T. N. [2 ]
Yang, Y. [1 ]
机构
[1] Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AT, S Glam, Wales
[2] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
关键词
groundwater flow; conductivity coefficient; mixed finite element method; mixed hybrid finite element method; preconditioners; conjugate gradient; MINRES; AMG; PARTIAL-DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD;
D O I
10.1002/fld.3854
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the development of efficient iterative methods for solving the linear system of equations arising from stochastic FEMs for single-phase fluid flow in porous media. It is assumed that the conductivity coefficient varies randomly in space according to some given correlation function and is approximated using a truncated Karhunen-Loeve expansion. Distinct discretizations of the deterministic and stochastic spaces are required for implementations of the stochastic FEM. In this paper, the deterministic space is discretized using classical finite elements and the stochastic space using a polynomial chaos expansion. The highly structured linear systems which result from this discretization mean that Krylov subspace iterative solvers are extremely effective. The performance of a range of preconditioned iterative methods is investigated and evaluated in terms of robustness with respect to mesh size and variability of the conductivity coefficient. An efficient symmetric block Gauss-Seidel preconditioner is proposed for problems in which the conductivity coefficient has a large standard deviation.The companion paper, herein, referred to as Part 2, considers the situation in which Gaussian random fields are transformed into lognormal ones by projecting the truncated Karhunen-Loeve expansion onto a polynomial chaos basis. This results in a stochastic nonlinear problem because the random fields are represented using polynomial chaos containing terms that are generally nonlinear in the random variables. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:359 / 385
页数:27
相关论文
共 50 条
  • [1] Efficient stochastic finite element methods for flow in heterogeneous porous media. Part 2: Random lognormal permeability
    Traverso, Luca
    Phillips, Timothy Nigel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (11) : 1626 - 1652
  • [2] ISSUES IN FLOW AND TRANSPORT IN HETEROGENEOUS POROUS MEDIA.
    Philip, J.R.
    Transport in Porous Media, 1985, 1 (04) : 319 - 338
  • [3] A stochastic multiscale framework for modeling flow through random heterogeneous porous media
    Ganapathysubramanian, B.
    Zabaras, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) : 591 - 618
  • [4] Oscillatory forcing of flow through porous media. Part 1. Steady flow
    Graham, DR
    Higdon, JJL
    JOURNAL OF FLUID MECHANICS, 2002, 465 : 213 - 235
  • [5] CONDITIONAL AVERAGING OF THE EQUATIONS OF FLOW IN RANDOM COMPOSITE, POROUS MEDIA.
    Shvidler, M.I.
    Fluid Dynamics, 1987, 22 (01) : 64 - 69
  • [6] A study of stochastic FEM method for porous media flow problem
    Blaheta, R.
    Beres, M.
    Domesova, S.
    APPLIED MATHEMATICS IN ENGINEERING AND RELIABILITY, 2016, : 281 - 289
  • [7] Convection and flow in porous media. Part 1. Visualization by magnetic resonance imaging
    Shattuck, M.D.
    Behringer, R.P.
    Johnson, G.A.
    Georgiadis, J.G.
    Journal of Fluid Mechanics, 1997, 332 : 215 - 245
  • [8] Stochastic characterization of multiphase flow in random porous media
    Ghanem, R
    Dham, S
    COMPUTER METHODS AND WATER RESOURCES III, 1996, : 315 - 322
  • [9] Wave propagation in heterogeneous media. Part 1: Effective velocities in fractured media
    Saenger, EH
    Priller, H
    Grosse, C
    Hubral, P
    Shapiro, SA
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING 01, 2002, : 469 - 475
  • [10] Oscillatory forcing of flow through porous media. Part 2. Unsteady flow
    Graham, DR
    Higdon, JJL
    JOURNAL OF FLUID MECHANICS, 2002, 465 : 237 - 260