Finite difference scheme for multi-term variable-order fractional diffusion equation

被引:19
|
作者
Xu, Tao [1 ]
Lu, Shujuan [1 ]
Chen, Wenping [1 ]
Chen, Hu [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
基金
中国国家自然科学基金;
关键词
Multi-term fractional diffusion equation; Variable-order fractional derivatives; Difference scheme; Stability; Convergence;
D O I
10.1186/s13662-018-1544-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a multi-term variable-order fractional diffusion equation on a finite domain, which involves the Caputo variable-order time fractional derivative of order alpha(x, t) is an element of (0, 1) and the Riesz variable-order space fractional derivatives of order beta(x, t) is an element of(0, 1), gamma (x, t) is an element of(1, 2). Approximating the temporal direction derivative by L1-algorithm and the spatial direction derivative by the standard and shifted Grunwald method, respectively, a characteristic finite difference scheme is proposed. The stability and convergence of the difference schemes are analyzed via mathematical induction. Some numerical experiments are provided to show the efficiency of the proposed difference schemes.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation
    MA Yan
    数学季刊(英文版), 2016, 31 (01) : 69 - 81
  • [32] A computational method for solving variable-order fractional nonlinear diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Yang, Yin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 352 : 235 - 248
  • [33] FAST COMPACT DIFFERENCE SCHEME FOR THE FOURTH-ORDER TIME MULTI-TERM FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE FIRST DIRICHLET BOUNDARY
    Gao, Guang-hua
    Xu, Peng
    Tang, Rui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2736 - 2761
  • [34] Stability and convergence of difference schemes for the multi-term time-fractional diffusion equation with generalized memory kernels
    Khibiev, A. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (03): : 582 - 597
  • [35] Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme
    Safdari, H.
    Mesgarani, H.
    Javidi, M.
    Aghdam, Y. Esmaeelzade
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
  • [36] Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme
    H. Safdari
    H. Mesgarani
    M. Javidi
    Y. Esmaeelzade Aghdam
    Computational and Applied Mathematics, 2020, 39
  • [37] A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay
    Li, Jing
    Kang, Xinyue
    Shi, Xingyun
    Song, Yufei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 101 - 111
  • [38] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Wang, Qiu-Ya
    She, Zi-Hang
    Lao, Cheng-Xue
    Lin, Fu-Rong
    NUMERICAL ALGORITHMS, 2024, 95 (02) : 859 - 895
  • [39] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Qiu-Ya Wang
    Zi-Hang She
    Cheng-Xue Lao
    Fu-Rong Lin
    Numerical Algorithms, 2024, 95 : 859 - 895
  • [40] A Compact Difference Scheme for Fourth-Order Temporal Multi-Term Fractional Wave Equations and Maximum Error Estimates
    Gao, Guang-Hua
    Liu, Rui
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (04) : 703 - 722