A numerical method for nonlinear complex modes with application to active-passive damped sandwich structures

被引:15
作者
Boudaoud, Hakim [1 ,2 ]
Belouettar, Salim [1 ]
Daya, El Mostafa [2 ]
Potier-Ferry, Michel [2 ]
机构
[1] Ctr Rech Publ Henri Tudor, L-1855 Luxembourg, Luxembourg
[2] Univ Paul Verlaine Metz, LPMM, CNRS, UMR 7554,ISGMP, F-57045 Metz 01, France
关键词
Sandwich structures; Viscoelasticity; Piezoelectricity; Active; Passive; Hybrid; Finite element method; Vibrations; Nonlinear eigenvalues; Perturbation technique; Homotopy; Asymptotic numerical method; FINITE-ELEMENT ANALYSIS; CONSTRAINED VISCOELASTIC LAYER; PADE APPROXIMANTS; BOUNDARY-CONDITIONS; EIGENVALUE PROBLEMS; BEAMS; VIBRATIONS; COMPOSITES; SHELLS;
D O I
10.1016/j.engstruct.2008.08.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, a numerical method is proposed for determining complex vibrations modes of sandwich structures with piezoelectric and viscoelastic layers. Based on homotopy and asymptotic numerical techniques, this method leads to the damping properties calculation (loss factor and natural frequency per mode)of the hybrid sandwich structure. The numerical results of the loss factor and natural frequency are compared to those obtained from analytical beam model and from numerical studies the modal strain energy method. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 36 条
[1]  
AGNES GS, 1993, 34 AIAA ASME ASCE AH, P3499
[2]  
Bathe K, 1996, Finite Element Procedures
[3]   A shell finite element for active-passive vibration control of composite structures with piezoelectric and viscoelastic layers [J].
Boudaoud, Hakim ;
Belouettar, Salim ;
Daya, El Mostafa ;
Potier-Ferry, Michel .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2008, 15 (3-4) :208-219
[4]  
Chen W.-F., 1994, STUDIES APPL MECH, V37
[5]   ASYMPTOTIC NUMERICAL-METHODS AND PADE APPROXIMANTS FOR NONLINEAR ELASTIC STRUCTURES [J].
COCHELIN, B ;
DAMIL, N ;
POTIERFERRY, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (07) :1187-1213
[6]  
COCHELIN B, 1994, MTHODE ASYMPTOTIQUE
[7]  
Cochelin B., 1994, Rev. Eur. Elements Finis, V3, P281, DOI [10.1080/12506559.1994.10511124, DOI 10.1080/12506559.1994.10511124]
[8]  
Damil N, 1999, COMMUN NUMER METH EN, V15, P701, DOI 10.1002/(SICI)1099-0887(199910)15:10<701::AID-CNM283>3.0.CO
[9]  
2-L
[10]   A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures [J].
Daya, EM ;
Potier-Ferry, M .
COMPUTERS & STRUCTURES, 2001, 79 (05) :533-541