Efficiency and convergence properties of slice samplers

被引:39
作者
Mira, A
Tierney, L
机构
[1] Univ Insubria, Fac Econ, I-21100 Varese, Italy
[2] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
auxiliary variables; efficiency of MCMC; geometric ergodicity; Markov chain Monte Carlo; Metropolis-Hastings algorithm; Peskun ordering; uniform ergodicity;
D O I
10.1111/1467-9469.00267
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The slice sampler (SS) is a method of constructing a reversible Markov chain with a specified invariant distribution. Given an independence Metropolis-Hastings algorithm (IMHA) it is always possible to construct a SS that dominates it in the Peskun sense. This means that the resulting SS produces estimates with a smaller asymptotic variance than the IMHA. Furthermore the SS has a smaller second-largest eigenvalue. This ensures faster convergence to the target distribution. A sufficient condition for uniform ergodicity of them SS is given and an: upper bound for the rate of convergence to stationarity is provided.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条