To overcome the permeability-selectivity limitation and improve the performance of desalination membranes, novel methods and design strategies are needed to prepare new types of thin film composite (TFC) nanofiltration (NF) membranes. In this work, a modified TFC membrane with a sandwiched layer and a surface layer was fabricated through a facile additional two-step approach. The microfiltration (MF) substrate and TFC surface were modified by a cellulose nanocrystal (CNC) sandwiched layer and a polydopamine (PDA) layer, respectively. Scanning electron microscopy (SEM) analysis indicated that the support modified by CNC, presented a more homogeneous surface than the control TFC. Cross-sectional SEM images showed that the underneath MF support. CNC interlayer, polyamide layer and PDA deposition layer were perfectly integrated. The surface charge was determined by an electrophoretic analyzer and revealed that the CNC interlayer increased the membrane electronegativity, while the PDA layer presented the opposite effect. Compared to the control TFC membrane, the solute permeability and rejection of the resultant CNC-TFC-PDA membrane were simultaneously increased, indicating a breakthrough in the trade-off limitation. The modified membranes exhibited a high removal rate for Congo red, Rose Bengal. sodium lignosulfonate and alkaline lignin, suggesting their excellent rejection performance for textile dyes and lignin derivatives. Fouling tests indicated that both the interlayer and surface layer exhibited positive effects on fouling alleviation. The effects of each functional layer were explored, and the main factors for performance improvement, including the modified hydrophilicity, surface charge, pore size and surface roughness, were discussed. (C) 2020 Elsevier B.V. All rights reserved.