Robust Identification of Local Adaptation from Allele Frequencies

被引:419
作者
Guenther, Torsten [1 ]
Coop, Graham [2 ,3 ]
机构
[1] Univ Hohenheim, Inst Plant Breeding Seed Sci & Populat Genet, D-70593 Stuttgart, Germany
[2] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA
[3] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA
关键词
GENOME-WIDE PATTERNS; NEXT-GENERATION; DROSOPHILA-MELANOGASTER; ECOLOGICAL GENOMICS; DETECTING SELECTION; POSITIVE SELECTION; LATITUDINAL CLINE; NATURAL-SELECTION; FLOWERING-TIME; GENE-FREQUENCY;
D O I
10.1534/genetics.113.152462
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of "standardized allele frequencies" that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to F-ST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools-a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org.
引用
收藏
页码:205 / +
页数:34
相关论文
共 93 条
[1]   Tracking footprints of artificial selection in the dog genome [J].
Akey, Joshua M. ;
Ruhe, Alison L. ;
Akey, Dayna T. ;
Wong, Aaron K. ;
Connelly, Caitlin F. ;
Madeoy, Jennifer ;
Nicholas, Thomas J. ;
Neff, Mark W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (03) :1160-1165
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[3]  
[Anonymous], ARXIV12060889
[4]   Likelihood-based inference for genetic correlation coefficients [J].
Balding, DJ .
THEORETICAL POPULATION BIOLOGY, 2003, 63 (03) :221-230
[5]   Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana [J].
Banta, Joshua A. ;
Ehrenreich, Ian M. ;
Gerard, Silvia ;
Chou, Lucy ;
Wilczek, Amity ;
Schmitt, Johanna ;
Kover, Paula X. ;
Purugganan, Michael D. .
ECOLOGY LETTERS, 2012, 15 (08) :769-777
[6]   Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders [J].
Beall, Cynthia M. ;
Cavalleri, Gianpiero L. ;
Deng, Libin ;
Elston, Robert C. ;
Gao, Yang ;
Knight, Jo ;
Li, Chaohua ;
Li, Jiang Chuan ;
Liang, Yu ;
McCormack, Mark ;
Montgomery, Hugh E. ;
Pan, Hao ;
Robbins, Peter A. ;
Shianna, Kevin V. ;
Tam, Siu Cheung ;
Tsering, Ngodrop ;
Veeramah, Krishna R. ;
Wang, Wei ;
Wangdui, Puchung ;
Weale, Michael E. ;
Xu, Yaomin ;
Xu, Zhe ;
Yang, Ling ;
Zaman, M. Justin ;
Zeng, Changqing ;
Zhang, Li ;
Zhang, Xianglong ;
Zhaxi, Pingcuo ;
Zheng, Yong Tang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (25) :11459-11464
[7]   Genome-wide Comparison of African-Ancestry Populations from CARe and Other Cohorts Reveals Signals of Natural Selection [J].
Bhatia, Gaurav ;
Patterson, Nick ;
Pasaniuc, Bogdan ;
Zaitlen, Noah ;
Genovese, Giulio ;
Pollack, Samuela ;
Mallick, Swapan ;
Myers, Simon ;
Tandon, Arti ;
Spencer, Chris ;
Palmer, Cameron D. ;
Adeyemo, Adebowale A. ;
Akylbekova, Ermeg L. ;
Cupples, L. Adrienne ;
Divers, Jasmin ;
Fornage, Myriam ;
Kao, W. H. Linda ;
Lange, Leslie ;
Li, Mingyao ;
Musani, Solomon ;
Mychaleckyj, Josyf C. ;
Ogunniyi, Adesola ;
Papanicolaou, George ;
Rotimi, Charles N. ;
Rotter, Jerome I. ;
Ruczinski, Ingo ;
Salako, Babatunde ;
Siscovick, David S. ;
Tayo, Bamidele O. ;
Yang, Qiong ;
McCarro, Steve ;
Sabeti, Pardis ;
Lettre, Guillaume ;
De Jager, Phil ;
Hirschhorn, Joel ;
Zhu, Xiaofeng ;
Cooper, Richard ;
Reich, David ;
Wilson, James G. ;
Price, Alkes L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (03) :368-381
[8]   Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data [J].
Bigham, Abigail ;
Bauchet, Marc ;
Pinto, Dalila ;
Mao, Xianyun ;
Akey, Joshua M. ;
Mei, Rui ;
Scherer, Stephen W. ;
Julian, Colleen G. ;
Wilson, Megan J. ;
Herraez, David Lopez ;
Brutsaert, Tom ;
Parra, Esteban J. ;
Moore, Lorna G. ;
Shriver, Mark D. .
PLOS GENETICS, 2010, 6 (09)
[9]   Detecting Selective Sweeps from Pooled Next-Generation Sequencing Samples [J].
Boitard, Simon ;
Schloetterer, Christian ;
Nolte, Viola ;
Pandey, Ram Vinay ;
Futschik, Andreas .
MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (09) :2177-2186
[10]   Detecting Selection in Population Trees: The Lewontin and Krakauer Test Extended [J].
Bonhomme, Maxime ;
Chevalet, Claude ;
Servin, Bertrand ;
Boitard, Simon ;
Abdallah, Jihad ;
Blott, Sarah ;
SanCristobal, Magali .
GENETICS, 2010, 186 (01) :241-U406