FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION

被引:9
作者
Salgado, Abner J. [1 ]
Zhang, Wujun [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 02期
关键词
Fully nonlinear equations; discrete maximum principle; finite elements; ERROR-BOUNDS; DIFFERENCE APPROXIMATIONS; GAUSSIAN QUADRATURE; VISCOSITY SOLUTIONS; CONVERGENCE; SCHEMES;
D O I
10.1051/m2an/2018067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale epsilon is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as epsilon; h -> 0, and epsilon greater than or similar to (h vertical bar log h vertical bar)(1/2). In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution.
引用
收藏
页码:351 / 374
页数:24
相关论文
共 50 条
[41]   A finite element approximation of a current-induced magnetization dynamics model [J].
Moumni, Mohammed ;
Tilioua, Mouhcine .
JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (01) :53-69
[42]   Energy-Stable Finite Element Approximation of the Landau-Lifshitz-Bloch Equation Below the Curie Temperature [J].
Soenjaya, Agus L. .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 104 (02)
[43]   Superconvergence analysis of a mixed finite element approximation for the nonlinear fourth-order Rosenau-RLW equation [J].
Shi, Dongyang ;
Jia, Xu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 98 :169-180
[44]   A FINITE-ELEMENT APPROXIMATION-THEORY FOR THE DRIFT DIFFUSION SEMICONDUCTOR MODEL [J].
JEROME, JW ;
KERKHOVEN, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :403-422
[45]   Numerical approximation of SAV finite difference method for the Allen-Cahn equation [J].
Chen, Hang ;
Huang, Langyang ;
Zhuang, Qingqu ;
Weng, Zhifeng .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2023, 14 (05)
[46]   STOCHASTIC APPROXIMATION FINITE ELEMENT METHOD: ANALYTICAL FORMULAS FOR MULTIDIMENSIONAL DIFFUSION PROCESS [J].
Bompis, R. ;
Gobet, E. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) :3140-3164
[47]   Approximation of linear hyperbolic interface problems on finite element: Some new estimates [J].
Adewole, Matthew O. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 :245-257
[48]   A finite element method for equal width equation [J].
Saka, Buelent .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :730-747
[49]   Mixed finite element methods for the Rosenau equation [J].
Atouani, Noureddine ;
Ouali, Yousra ;
Omrani, Khaled .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) :393-420
[50]   On the finite element approximation of the obstacle problem of a Naghdi shell [J].
Khenfar, Sokina ;
Nicaise, Serge ;
Merabet, Ismail .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 441