FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION

被引:9
作者
Salgado, Abner J. [1 ]
Zhang, Wujun [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 02期
关键词
Fully nonlinear equations; discrete maximum principle; finite elements; ERROR-BOUNDS; DIFFERENCE APPROXIMATIONS; GAUSSIAN QUADRATURE; VISCOSITY SOLUTIONS; CONVERGENCE; SCHEMES;
D O I
10.1051/m2an/2018067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale epsilon is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as epsilon; h -> 0, and epsilon greater than or similar to (h vertical bar log h vertical bar)(1/2). In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution.
引用
收藏
页码:351 / 374
页数:24
相关论文
共 50 条
[31]   Residual-Based A Posteriori Error Estimator for the Mixed Finite Element Approximation of the Biharmonic Equation [J].
Gudi, Thirupathi .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) :315-328
[32]   STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF THE STOCHASTIC CAHN-HILLIARD EQUATION [J].
Furihata, Daisuke ;
Kovacs, Mihaly ;
Larsson, Stig ;
Lindgren, Fredrik .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) :708-731
[33]   Finite element approximation of a Stefan problem with degenerate Joule heating [J].
Barrett, JW ;
Nürnberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (04) :633-652
[34]   Finite element approximation of Hamilton-Jacobi-Bellman equations with nonlinear mixed boundary conditions [J].
Jaroszkowski, Bartosz ;
Jensen, Max .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) :576-603
[35]   On a finite element approximation for the elastoplastic torsion problem [J].
Chouly, Franz ;
Hild, Patrick .
APPLIED MATHEMATICS LETTERS, 2022, 132
[36]   Well-posedness and finite element approximation for the Landau-Lifshitz-Gilbert equation with spin torques [J].
Vinod, Noah ;
Tran, Thanh .
APPLICABLE ANALYSIS, 2025, 104 (10) :1876-1900
[37]   A general accuracy criterion for finite element approximation [J].
Tsukerman, I .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2425-2428
[38]   Finite element approximation of field dislocation mechanics [J].
Roy, A ;
Acharya, A .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (01) :143-170
[39]   Finite element approximation of large bending isometries [J].
Bartels, Soeren .
NUMERISCHE MATHEMATIK, 2013, 124 (03) :415-440
[40]   Finite element approximation of the diffusion operator on tetrahedra [J].
Putti, M ;
Cordes, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (04) :1154-1168