FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION

被引:9
作者
Salgado, Abner J. [1 ]
Zhang, Wujun [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 02期
关键词
Fully nonlinear equations; discrete maximum principle; finite elements; ERROR-BOUNDS; DIFFERENCE APPROXIMATIONS; GAUSSIAN QUADRATURE; VISCOSITY SOLUTIONS; CONVERGENCE; SCHEMES;
D O I
10.1051/m2an/2018067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale epsilon is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as epsilon; h -> 0, and epsilon greater than or similar to (h vertical bar log h vertical bar)(1/2). In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution.
引用
收藏
页码:351 / 374
页数:24
相关论文
共 50 条
[11]   Finite Element Methods for Isotropic Isaacs Equations with Viscosity and Strong Dirichlet Boundary Conditions [J].
Jaroszkowski, Bartosz ;
Jensen, Max .
APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (02)
[12]   Discontinuous Galerkin and C 0-IP finite element approximation of periodic Hamilton-Jacobi-Bellman-Isaacs problems with application to numerical homogenization [J].
KAWECKI, E. L. L. Y. A. L. ;
SPREKELER, T. I. M. O. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (02) :679-704
[13]   Supercloseness on graded meshes for Q1 finite element approximation of a reaction-diffusion equation [J].
Duran, R. G. ;
Lombardi, A. L. ;
Prieto, M. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 242 :232-247
[14]   On the finite-element approximation of ∞-harmonic functions [J].
Pryer, Tristan .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (04) :819-834
[15]   FINITE ELEMENT APPROXIMATION OF LEVEL SET MOTION BY POWERS OF THE MEAN CURVATURE [J].
Kroner, Axel ;
Kroener, Eva ;
Kroener, Heiko .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A4158-A4183
[16]   DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION [J].
Kay, David ;
Styles, Vanessa ;
Sueli, Endre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2660-2685
[17]   Finite volume element approximation for nonlinear diffusion problems with degenerate diffusion coefficients [J].
Wu, Dan ;
Yue, Jingyan ;
Yuan, Guangwei ;
Lv, Junliang .
APPLIED NUMERICAL MATHEMATICS, 2019, 140 :23-47
[18]   Finite Element Approximation for A Convective Brinkman-Forchheimer Problem Coupled with A Heat Equation [J].
Campana, Gilberto ;
Munoz, Pablo ;
Otarola, Enrique .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 104 (01)
[19]   A remark on finite element approximation of singular parabolic p(x, t)-Laplacian equation [J].
El Bahja, Hamid .
ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2) :107-120
[20]   FINITE ELEMENT APPROXIMATION OF NONLOCAL DYNAMIC FRACTURE MODELS [J].
Jha, P. K. ;
Lipton, R. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03) :1675-1710