FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION

被引:9
|
作者
Salgado, Abner J. [1 ]
Zhang, Wujun [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 02期
关键词
Fully nonlinear equations; discrete maximum principle; finite elements; ERROR-BOUNDS; DIFFERENCE APPROXIMATIONS; GAUSSIAN QUADRATURE; VISCOSITY SOLUTIONS; CONVERGENCE; SCHEMES;
D O I
10.1051/m2an/2018067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale epsilon is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as epsilon; h -> 0, and epsilon greater than or similar to (h vertical bar log h vertical bar)(1/2). In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution.
引用
收藏
页码:351 / 374
页数:24
相关论文
共 50 条
  • [1] Regularity theory for the Isaacs equation through approximation methods
    Pimentel, Edgard A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (01): : 53 - 74
  • [2] Finite element approximation for a modified anomalous subdiffusion equation
    Liu, Q.
    Liu, F.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4103 - 4116
  • [3] MIXED FINITE ELEMENT APPROXIMATION OF THE HAMILTON-JACOBI-BELLMAN EQUATION WITH CORDES COEFFICIENTS
    Gallistl, Dietmar
    Suli, Endre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 592 - 614
  • [4] Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation
    Jehanzeb Hameed Chaudhry
    Stephen D. Bond
    Luke N. Olson
    Journal of Scientific Computing, 2011, 47 : 347 - 364
  • [5] Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation
    Chaudhry, Jehanzeb Hameed
    Bond, Stephen D.
    Olson, Luke N.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (03) : 347 - 364
  • [6] A finite element approximation for the stochastic Landau-Lifshitz-Gilbert equation
    Goldys, Beniamin
    Le, Kim-Ngan
    Thanh Tran
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 937 - 970
  • [7] A convergent finite element approximation for Landau-Lifschitz-Gilbert equation
    Alouges, Francois
    Kritsikis, Evaggelos
    Toussaint, Jean-Christophe
    PHYSICA B-CONDENSED MATTER, 2012, 407 (09) : 1345 - 1349
  • [8] Finite element approximation of the Cahn-Hilliard equation with degenerate mobility
    Barrett, JW
    Blowey, JF
    Garcke, H
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 286 - 318
  • [9] FINITE ELEMENT APPROXIMATION OF THE LINEAR STOCHASTIC WAVE EQUATION WITH ADDITIVE NOISE
    Kovacs, Mihaly
    Larsson, Stig
    Saedpanah, Fardin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 408 - 427
  • [10] A domain decomposition Taylor Galerkin finite element approximation of a parabolic singularly perturbed differential equation
    Kumar, Sunil
    Kumar, B. V. Rathish
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 508 - 522