Fixed points and stability of functional equations in fuzzy ternary Banach algebras

被引:5
作者
Asgari, G. [1 ]
Cho, Y. J. [2 ,3 ]
Lee, Y. W. [4 ]
Gordji, M. Eshaghi [5 ]
机构
[1] Islamic Azad Univ, Dept Math, Aligoudarz Branch, Aligoudarz, Iran
[2] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[4] Daejeon Univ, Dept Comp Hacking & Informat Secur, Taejon 300716, South Korea
[5] Semnan Univ, Dept Math, Semnan, Iran
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam-Rassias stability; Diaz and Margolis contraction theorem; fuzzy ternary Banach algebra; ternary algebras; functional equations; ASTERISK-HOMOMORPHISMS; DERIVATIONS;
D O I
10.1186/1029-242X-2013-166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Diaz and Margolis fixed point theorem, we establish the generalized Hyers-Ulam-Rassias stability of the ternary homomorphisms and ternary derivations between fuzzy ternary Banach algebras associated to the following (m,n)-Cauchy-Jensen additive functional equation: (1 <= 1<...<im <= n 1 <= kj <= n k1ij,j is an element of{1,...,m})Sigma f(Sigma(m)(j=1) x(ij)/m + Sigma(n-m)(i=1) x(kj)) = (n-m+1)/n (n m) Sigma(n)(i=1) f(X-j).
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Abramov V., 2009, J GEN LIE THEORY APP, V3, P77, DOI DOI 10.4303/JGLTA/S090201
[2]  
[Anonymous], 1984, AEQUATIONES MATH
[3]  
[Anonymous], FIXED POINT IN PRESS
[4]  
[Anonymous], 1981, AM J MATH
[5]  
[Anonymous], ABH MATH SEMIN U HAM
[6]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[7]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[8]  
Bag T., 2003, J FUZZY MATH, V11, P687
[9]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[10]  
Cadariu L., 2003, An. Univ. Timisoara, Ser. Mat. Inform., V41, P25