Image restoration using statistical wavelet models

被引:0
作者
Liu, J [1 ]
Moulin, P [1 ]
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
来源
WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX | 2001年 / 4478卷
关键词
image restoration; overcomplete wavelet representation; statistical modeling; Bayesian risk;
D O I
10.1117/12.449704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an image restoration algorithm based on state-of-the-art wavelet domain statistical models. We present an efficient method to estimate the model parameters from the observations, and solve the restoration problem in orthonormal and translation-invariant (TI) wavelet domains. Substantial improvements over previous wavelet-based restoration methods are obtained. The use of a TI wavelet transform further enhances the restoration performance. We study the improvement from the viewpoint of Bayesian estimation theory and show that replacing an estimator with its TI version will reduce the expected risk if the signal and the degradation model are stationary.
引用
收藏
页码:20 / 33
页数:4
相关论文
共 26 条
[1]  
[Anonymous], 1991, ITERATIVE IDENTIFICA
[2]   Spatially adaptive wavelet-based multiscale image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (04) :619-634
[3]   Digital image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE SIGNAL PROCESSING MAGAZINE, 1997, 14 (02) :24-41
[4]   Wavelet domain image restoration with adaptive edge-preserving regularization [J].
Belge, M ;
Kilmer, ME ;
Miller, EL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) :597-608
[5]   Adaptive regularized constrained least squares image restoration [J].
Berger, T ;
Strömberg, JO ;
Eltoft, T .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (09) :1191-1203
[6]  
BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
[7]  
BESAG J, 1989, J APPL STAT, V16, P395, DOI DOI 10.1080/02664768900000049
[8]  
Candes E. J., 1998, THESIS STANFORD U
[9]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[10]  
Coifman R. R., 1995, LECT NOTES STAT, V103, P125, DOI [DOI 10.1007/978-1-4612-2544-7_9, DOI 10.1002/CPA.3160410705, 10.1002/cpa.3160410705]