PERIODIC SOLUTIONS FOR NONLOCAL FRACTIONAL EQUATIONS

被引:15
作者
Ambrosio, Vincenzo [1 ]
Bisci, Giovanni Molica [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
[2] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
关键词
Fractional operators; multiple periodic solutions; critical point result; variational methods; extension method; RELATIVISTIC SCHRODINGER-OPERATORS; ELLIPTIC PROBLEMS; EXTENSION PROBLEM; EXISTENCE;
D O I
10.3934/cpaa.2017016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the existence of (weak) periodic solutions for nonlocal fractional equations with periodic boundary conditions. These equations have a variational structure and, by applying a critical point result coming out from a classical Pucci-Serrin theorem in addition to a local minimum result for differentiable functionals due to Ricceri, we are able to prove the existence of at least two periodic solutions for the treated problems. As far as we know, all these results are new.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 39 条
[21]   Global well-posedness for the critical 2D dissipative quasi-geostrophic equation [J].
Kiselev, A. ;
Nazarov, F. ;
Volberg, A. .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :445-453
[22]   NONLOCAL SELF-IMPROVING PROPERTIES [J].
Kuusi, Tuomo ;
Mingione, Giuseppe ;
Sire, Yannick .
ANALYSIS & PDE, 2015, 8 (01) :57-114
[23]  
Lieb E., 2001, Analysis
[24]   Superlinear problems without Ambrosetti and Rabinowitz growth condition [J].
Miyagaki, O. H. ;
Souto, M. A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) :3628-3638
[25]   A MOUNTAIN PASS THEOREM [J].
PUCCI, P ;
SERRIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (01) :142-149
[26]  
Pucci P, REV MAT IBE IN PRESS
[27]  
Pucci P., 2014, CONT MATH, V2, P469
[28]  
Pucci P., 2010, B UNIONE ITAL 9, V9, P543
[29]   Extension Problem and Harnack's Inequality for Some Fractional Operators [J].
Raul Stinga, Pablo ;
Luis Torrea, Jose .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (11) :2092-2122
[30]  
Ricceri B, 2013, DYNAM SYST APPL, V22, P317