PERIODIC SOLUTIONS FOR NONLOCAL FRACTIONAL EQUATIONS

被引:15
作者
Ambrosio, Vincenzo [1 ]
Bisci, Giovanni Molica [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
[2] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
关键词
Fractional operators; multiple periodic solutions; critical point result; variational methods; extension method; RELATIVISTIC SCHRODINGER-OPERATORS; ELLIPTIC PROBLEMS; EXTENSION PROBLEM; EXISTENCE;
D O I
10.3934/cpaa.2017016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the existence of (weak) periodic solutions for nonlocal fractional equations with periodic boundary conditions. These equations have a variational structure and, by applying a critical point result coming out from a classical Pucci-Serrin theorem in addition to a local minimum result for differentiable functionals due to Ricceri, we are able to prove the existence of at least two periodic solutions for the treated problems. As far as we know, all these results are new.
引用
收藏
页码:331 / 344
页数:14
相关论文
共 39 条
[1]  
Ambrosio V., DISCRETE CO IN PRESS
[2]  
Ambrosio V., TOPOL METHO IN PRESS
[4]  
[Anonymous], 2000, CONSTRCTIVE EXPT NON, V27, P275
[5]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[6]  
Bartolo R., ANN MAT PUR IN PRESS
[7]   A pseudo-index approach to fractional equations [J].
Bartolo, Rossella ;
Bisci, Giovanni Molica .
EXPOSITIONES MATHEMATICAE, 2015, 33 (04) :502-516
[8]   Superlinear nonlocal fractional problems with infinitely many solutions [J].
Binlin, Zhang ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
NONLINEARITY, 2015, 28 (07) :2247-2264
[9]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[10]   SUBELLIPTIC AND PARAMETRIC EQUATIONS ON CARNOT GROUPS [J].
Bisci, Giovanni Molica ;
Ferrara, Massimiliano .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) :3035-3045